ECE 2210 homework \# 14

Read the Frequency Response, Filters \& Bode Plots handout and/or sections 2.31-33 in your textbook.

1. Convert the following ratios to dB .
a) $\frac{4}{1}$
b) $\frac{1}{4}$
c) 500
d) 20000
2. Convert $20 \mathrm{~dB}, 46 \mathrm{~dB},-46 \mathrm{~dB}$ and 80 dB to voltage ratios. Example: 50 dB , voltage ratio $=10^{\frac{50}{20}}=316.23$
a) $20 \cdot \mathrm{~dB}$
b) $46 \cdot \mathrm{~dB}$
c) $-46 \cdot \mathrm{~dB}$
d) $80 \cdot \mathrm{~dB}$
3. a) Find the transfer function of the filter circuit shown. $\mathbf{V}_{\mathbf{i n}}$ is the input and $\mathbf{V}_{\mathbf{L}}$ is the output. $\quad H(\omega)=$?

b) Find the corner frequency(ies).

Transcribe the results of parts a) and b) here:
$H(\omega)=$
Corner frequency(ies):
c) Find the approximations of the transfer function in each frequency region, find magnitudes in dB , and slopes in $\mathrm{dB} /$ decade.
d) Draw the asymptotic Bode plot (the straight-line approximation) of the filter circuit shown above. Accurately draw it on the graph paper provided. Label the vertical axis with numbers in dB .

e) The asymptotic Bode plot is not exact. Sketch the actual magnitude of the transfer function on the same plot. For the frequency where this difference is largest (the corner frequency), calculate the actual magnitude.
f) Calculate the actual magnitude of the transfer function at the corner frequency.
g) Calculate the actual magnitude of the transfer function at one octave above the corner frequency $\left(2 \omega_{\mathrm{c}}\right)$.

For ALL plotting problems, you must show the steps you use to get the Bode plot like I showed in lecture and the notes. That is, show things like the corner frequency(ies), the approximations of the transfer function in each frequency region, slopes and calculations of dB , numbers on plots, actual magnitude plots, etc..
4. Draw the asymptotic Bode plot (the straight-line approximation) of the following transfer functions.
a) $\mathbf{H}_{\mathbf{a}}(\omega)$:=
$=\frac{20}{1+\mathrm{j} \cdot \frac{\omega}{4000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}}}$

ECE 2210 homework \# 14, p3
b) $\mathbf{H}_{\mathbf{b}}(\omega):=\frac{120 \cdot \mathrm{j} \cdot \omega}{400 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}+j \cdot 4 \cdot \omega}$

Turn over, more on next page

2. $10,200,0.005,10^{4}$

Answers $1.12 \mathrm{~dB},-12 \mathrm{~dB}, 54 \mathrm{~dB}, 86 \mathrm{~dB}$
3. a) $\frac{j \cdot \omega \cdot L}{j \cdot \omega \cdot L+R}$
b) $15000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
c) $\omega<\omega_{\text {c }}$
$\mathbf{H}(\omega) \simeq \frac{\mathrm{j} \cdot \omega \cdot \mathrm{L}}{\mathrm{R}} \quad$ proportional to ω slope $+20 \mathrm{~dB} / \mathrm{dec}$
$\omega>\omega_{\mathrm{c}}$ $\mathbf{H}(\omega) \simeq \frac{\mathrm{j} \cdot \omega \cdot \mathrm{L}}{\mathrm{j} \cdot \omega \cdot \mathrm{L}}=\begin{aligned} & 1 \quad \text { flat at } \\ & 20 \cdot \log (1)=0 \cdot \mathrm{~dB}\end{aligned}$
c) -3 dB at $15000 \mathrm{rad} / \mathrm{sec}$
d) -1 dB at $30000 \mathrm{rad} / \mathrm{sec}$

Magnitude plot
d) $\quad|\mathbf{H}(\omega)|$

Straight-line approximation

Actual (part e)

4. a)

b) high-pass c) high-pass
5. 3. high-pass
4.a) low-pass
6. Slope $-20 \mathrm{~dB} / \mathrm{dec}$ to 20 Hz , flat at 3.5 dB to 3 kHz , slope $+20 \mathrm{~dB} / \mathrm{dec}$ to 40 kHz , rest flat at 26 dB .

hw \# 14, p4
b) Actual magnitudes: 6.5 dB at $20 \mathrm{~Hz}, 6.5 \mathrm{~dB}$ at $3 \mathrm{kHz}, 23 \mathrm{~dB} / \mathrm{dec}$ at 40 kHz .
c) zeros: $20 \mathrm{~Hz}, 3 \mathrm{kHz}$, pole: 40 kHz
c) $\mathbf{H}_{\mathbf{c}^{(f)}}:=0.1 \cdot \frac{1+j \cdot \frac{f}{200 \cdot \mathrm{~Hz}}}{1+j \cdot \frac{f}{20000 \cdot \mathrm{~Hz}}}$

5. Determine the type of each of the filters in problems 3 and 4, low-pass, band-pass, or high-pass.
3.
4.a)
b)
c)

ECE 2210 homework \# 14, p6

6. a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function shown. Accurately draw it on the graph provided.

$$
H(f)=\frac{(3 \cdot \mathrm{kHz}+\mathrm{j} \cdot \mathrm{f}) \cdot\left(1 \cdot \mathrm{~Hz}+\frac{\mathrm{j} \cdot \mathrm{f}}{20}\right)}{\mathrm{j} \cdot \mathrm{f} \cdot\left(\frac{\mathrm{j} \cdot \mathrm{f}}{400}+100 \cdot \mathrm{~Hz}\right)}
$$

b) The asymptotic Bode plot is not exact. Using a dotted line, sketch the actual magnitude of the transfer function $|\mathrm{H}(\mathrm{f})|$ on the plot above. Indicate the point(s) where the difference between the two lines is the biggest (draw arrow(s)) and write down the actual magnitude(s) at that (those) point(s).
c) Identify all zeros and poles of the transfer function.

ECE 2210 homework \# 14, p6

