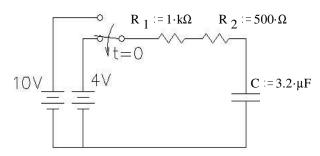
ECE 2210 / 00 homework # 10


If you have the textbook, read pages 128 to 147. If not, find the section in your book that covers first-order transient reponses of RC and RL circuits and read that.

1. An FE style problem

A 10-microfarad capacitor has been charged to a potential of 150 volts. A resistor of 25 Ω is then connected across the capacitor through a switch. When the switch has been closed for 10 time constants the total energy dissipated by the resistor is most nearly

- 2. a) The switch is closed at time t = 0 and $v_c(0) = 0V$, find $v_c(t)$.
 - b) What is the value of the voltage across C at $t = 40 \,\mu s$
- 3. In the circuit below, the switch has been in the upper position for a long time and is switched down at time t = 0.

What is the capacitor voltage (V_C) at $t = 4 \cdot ms$

- a) What is the time constant of this circuit? 5. Hint: Use a Thevenin equivalent circuit.
 - b) What will be the final value of v_C ? (After the switch has been closed for a long time)
- 6. In a circuit with two capacitors (C_1) , the left capacitor (C_2) has an initial charge and the right one does not. When the switch is closed at time t = 0, current i(t) flows, discharging C₁ and charging C₂.
 - a) Derive the differential equation for i(t). Hint: write an equation in terms of i and integrals of i, then differentiate the whole equation.

Write your DE in this form: Constant =
$$x(t) + \tau \cdot \frac{d}{dt}x(t)$$

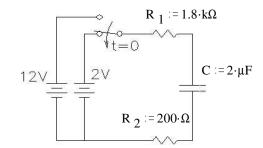
What is the time constant (τ)?

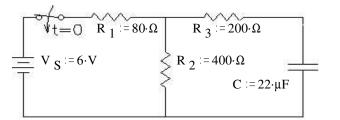
- b) Find i(t) given $C_1 = 24 \cdot \mu F$ $C_2 = 12 \cdot \mu F$
- c) Find $v_{C2}(t)$ for the same values. Hint: The trick here will be finding the final condition. Realize that charge will be conserved. If C₁ discharges x coulombs, then C₂ will charge x coulombs. Charges will stop flowing when $v_{C1} = v_{C2}$. It may help to think of two water tanks, one with half the cross-sectional area of the other.

 $R := 400 \cdot \Omega$

4. 6.44 · ms

d) Find the initial and final stored energy of the system (W_{C1} + W_{C2}) to find the total "loss". What happened to that energy? **3**. 6.61·V

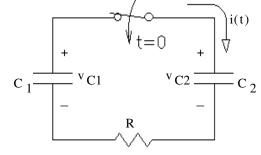

2.a) $12 \cdot V - 12 \cdot V \cdot e^{0.16 \cdot ms}$ Answers 1. B b) 2.65·V


ECE 2210 / 00

6.b)
$$i(t) = 45 \cdot mA \cdot e^{\frac{t}{3.2 \cdot mS}}$$

homework # 10

- $V_{t=0}$ R $\stackrel{\checkmark}{:=} 80 \cdot \Omega$ $= 2 \cdot \mu F$ $V_{in} = 12 \cdot V$
- 4. The switch below has been in the upper position for a long time and is switched down at time t = 0. At what time is $v_{\rm C} = 4$ V?



 $v_{C1}(0) = 18 \cdot V$

5. a) 5.87·ms

b) 5.V

c) $12 \cdot V - 12 \cdot V \cdot e^{3.2 \cdot ms}$

- A.Stolp
- (A) 1.0×10^{-7} joules
- (B) 1.1×10^{-1} joules
- (C) 9.0×10^1 joules

(D) 9.0×10^3 joules

 $v_{C2}(0) = 0 \cdot V$

d) 1.3·mJ

dissipated in resistor

b