Notes, Second Order Transients

ECE 2210 A.Stolp 4/6/00, 10/24/05

Capacitor	$i_C = C \cdot \frac{d}{dt} v_C$	$v_C = \frac{1}{C} \int_{-\infty}^{t}$	i C dt	Laplaceimpedance1C·s	initial conditions short, or $v_C(0+) = v_C(0-)$	<u>final co</u> l DC open	nditions AC <u>1</u> j·ω·C
Inductor	$v_L = L \cdot \frac{d}{dt} i_L$	$i_L = \frac{1}{L} \cdot \int_{-\infty}^{t}$	$v_L dt$	L·s	open, or $i_L(0+) = i_L(0-)$	short	j·ω·L
Resistor -\\\\\\	$v_R = i_{R} \cdot R$	$i_R = \frac{v_R}{R}$		R	R	R	R

Characteristic equation

Use Laplace impedances, manipulate your circuit equation(s) into one equation of this form:

May be I_{in} or any forcing function / May be I_X or any desired variable $\left(a_1 \cdot s^2 + b_1 \cdot s + k_1\right) \cdot V_{in}'(s) = \left(s^2 + b \cdot s + k\right) \cdot V_{X}'(s)$

Coefficients may be zero

NO denominator s terms $s^2 + b \cdot s + k = 0$ = Characteristic equation

Differential equation $a_1 \cdot \frac{d^2}{dt^2} v_{in}(t) + b_1 \cdot v_{in}(t) + k_1 \cdot V_{in}(t) = \frac{d^2}{dt^2} v_X(t) + b \cdot \frac{d}{dt} v_X(t) + k \cdot v_X(t)$

ransfer function Rearrange circuit equation to: $H(s) = \frac{V \times V(s)}{V \cdot in(s)} = \frac{a_1 \cdot s^2 + b_1 \cdot s + k_1}{s^2 + b \cdot s + k} = transfer function$ Transfer function

Complete solution

Solutions to the characteristic equation: $s_1 = -\frac{b}{2} + \frac{\sqrt{b^2 - 4 \cdot k}}{2}$ $s_2 = -\frac{b}{2} - \frac{\sqrt{b^2 - 4 \cdot k}}{2}$

Find initial Conditions (v_C and/or i_L)

Find conditions of just before time t = 0, $v_C(0-)$ and $i_1(0-)$. These will be the same just after time t = 0, $v_C(0+)$ and $i_1(0+)$ and will be your initial conditions.

Use normal circuit analysis to find your desired variable: $v_X(0)$ or $i_X(0)$

Also find: $\frac{d}{dt}v_X(0)$ or $\frac{d}{dt}i_X(0)$ The trick to finding these is to see that: $\frac{d}{dt}v_C(0) = \frac{{}^1C^{(0)}}{C}$ and $\frac{d}{dt}i_L(0) = \frac{{}^vL^{(0)}}{C}$

Find final conditions ("steady-state" or "forced" solution)

DC inputs: Inductors are shorts Capacitors are opens. Solve by DC analysis $v_X(\infty)$ or $i_X(\infty)$

AC inputs: Solve by AC steady-state analysis using ω

 $v_X(t)$ may be replaced by $i_X(t)$ or any desired variable in the equations below

Overdamped $b^2 - 4 \cdot k > 0$

 $v_X(0) = v_X(\infty) + B + D$ $\frac{d}{dt}v_X(0) = B \cdot s_1 + D \cdot s_2$ Solve simultaneously for B and D

Critically damped $b^2 - 4 \cdot k = 0$ $s_1 = s_2 = -\frac{b}{2} = s$ s_1 and s_2 are real, equal and

<u>Underdamped</u> $b^2 - 4 \cdot k < 0$ $s_1 = \alpha + j \cdot \omega$ $s_2 = \alpha - j \cdot \omega$ α is negative $v_X(t) = v_X(\infty) + e^{\alpha \cdot t} (B \cdot \cos(\omega \cdot t) + D \cdot \sin(\omega \cdot t))$

time

time

EE1050 Notes. Second Order Transients