ECE 2210 / 00 Capacitor Lecture Notes

Now that we have voltages and currents which can be functions of time, it's time to introduce the capacitor and the inductor.

Electrical equivalent:

$$
C=\varepsilon \cdot \frac{A}{d}=\frac{Q}{V}=\frac{d q}{d v}
$$

$$
\mathcal{V}^{\mathrm{i}} \mathrm{C} \begin{aligned}
& \text { flow is like } \\
& \text { current }
\end{aligned}
$$

Units: \quad farad $=\frac{\text { coul }}{\text { volt }}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\mathrm{volt}}$
$\mu \mathrm{F}=1 \cdot 10^{-6} \cdot$ farad
Fluid Model:
A. Stolp 2/17/03

$$
\mathrm{pF}=1 \cdot 10^{-12} \cdot \text { farad }
$$

For drawings of capacitors and info about tolerances, see Ch. 3 of textbook.

Basic equations
you should know:

$$
\begin{aligned}
\mathrm{C} & =\frac{\mathrm{Q}}{\mathrm{~V}} \\
\mathrm{i}_{\mathrm{C}} & =\mathrm{C} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{V}} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\mathrm{v}_{\mathrm{C}}}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}} \mathrm{i}_{\mathrm{C}}^{\mathrm{dt}} \\
& \text { Or... } \quad{ }^{\mathrm{v}_{\mathrm{C}}}=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}+\mathrm{v}_{\mathrm{C}}(0)} \\
& \text { Or... initial voltage } \\
& \\
&
\end{aligned}
$$

Energy stored in electric field: $\mathrm{W}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$
Capacitor voltage cannot change instantaneously
parallel:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots \\
\mathrm{c}_{1}+\mathrm{c}_{2}+ \\
\hline 1
\end{gathered}
$$

Capacitors are the only "backwards" components.
series: $\quad C_{e q}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots}$

Sinusoids

Steady-state or Final conditions

If a circuit has been connected for "a long time", then it has reached a steady state condition. that means the currents and voltages are no longer changing.
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}=0 \quad{ }^{\mathrm{i}} \mathrm{C}=\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}=0$

no current means it looks like an open

$$
\begin{aligned}
& { }^{\mathrm{i}} \mathrm{C}^{(\mathrm{t})}=\mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t}) \\
& \left.{ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t}}\right)=\frac{1}{\mathrm{C}} \cdot \int \quad{ }_{\mathrm{i}}^{\mathrm{C}} \mathrm{dt} \quad=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I}_{\mathrm{p}} \cdot \sin (\omega \cdot \mathrm{t})=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t}-90 \cdot \mathrm{deg}) \\
& \text { indefinite integral }
\end{aligned}
$$

> Voltage "lags" current, makes sense, current has to flow in first to charge capacitor.

Example

The voltage across a $0.5 \mu \mathrm{~F}$ capacitor is shown below. Make an accurate drawing of the capacitor current. Label the y-axis of your graph (I've already done the time-axis).
The accuracy of your plot at $0,2,6$, and 8 ms is important, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.
$\mathrm{C}:=0.5 \cdot \mu \mathrm{~F}$
$1-2 \mathrm{~ms}: \quad{ }^{\mathrm{i}} \mathrm{C}=\mathrm{C} \cdot \frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=0.5 \cdot \mu \mathrm{~F} \cdot \frac{-4 \cdot \mathrm{~V}}{2 \cdot \mathrm{~ms}}=-1 \cdot \mathrm{~mA}$
$2 \mathrm{~ms}-6 \mathrm{~ms}$: Initial slope is zero and the final slope is positive, so the current must be a triangle that starts at zero and ends at some height.

$$
\begin{aligned}
{ }^{\Delta{ }^{\mathrm{v}}} \mathrm{C}^{(\mathrm{t})} & =\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{(\mathrm{t}) \mathrm{dt}} \\
8 \cdot \mathrm{~V} & =\frac{1}{\mathrm{C}} \cdot\left(\frac{4 \cdot \mathrm{~ms} \cdot \text { height }}{2}\right) \\
\text { height } & =8 \cdot \mathrm{~V} \cdot \frac{\mathrm{C} \cdot 2}{4 \cdot \mathrm{~ms}}=2 \cdot \mathrm{~mA}
\end{aligned}
$$

$6 \mathrm{~ms}-8 \mathrm{~ms}$: Slope is zero, so the current must be zero.

ECE 2210 / 00 Inductor Lecture Notes

Basic equations you should know:

$$
v_{L}=L \cdot \frac{d}{d t} i_{L}
$$

Energy stored in electric field: $\mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}}{ }^{2}$ Inductor current cannot change instantaneously
Units: henry $=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{amp}}$
$\mathrm{L}=\mu_{\mathrm{o}} \cdot \mathrm{N}^{2} \cdot \mathrm{~K}$

μ is the permeability of the inductor core
K is a constant which depends on the inductor geometry N is the number of turns of wire

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}}{ }_{-}^{\mathrm{v}}{ }_{\mathrm{L}} \mathrm{dt} \\
& \text { Or... }{ }^{\mathrm{i}} \mathrm{~L}=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{v}}{ }_{\mathrm{L}} \mathrm{dt}+\mathrm{i}_{\mathrm{L}}(0) \\
& \text { initial current }
\end{aligned}
$$

$$
\mathrm{mH}=10^{-3} \cdot \mathrm{H} \quad \mu \mathrm{H}=10^{-6} \cdot \mathrm{H}
$$

```
series:
\[
\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots
\]
```

parallel:

$$
\begin{aligned}
\mathrm{L}_{\mathrm{eq}}= & \frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}+\ldots} \\
& =\mathrm{L}_{1} \mathrm{~L} \mathrm{~L} \mathrm{~L}_{3} \mathrm{~S} \\
& \mathrm{~L}_{4}
\end{aligned}
$$

Sinusoids $\quad{ }_{i} L^{(t)}=I_{p} \cdot \cos (\omega \cdot \mathrm{t})$
${ }^{v}{ }_{L}(t)=L \cdot \frac{d}{d t} i_{L}=L \cdot \omega \cdot\left(-I_{p} \cdot \sin (\omega \cdot t)\right) \quad=L \cdot \omega \cdot I_{p} \cdot \cos (\omega \cdot t+90 \cdot \operatorname{deg})$

Resonance
Series resonance
Voltage "leads" current, makes sense, voltage has to present to make current change, so voltage comes first.

The resonance frequency is calculated the same way for either case:
$\omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L} \cdot \mathrm{C}}}\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right) \quad$ OR.. $\quad \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}}}$
$\begin{aligned} & \text { If you have multiple capacitors or } \\ & \text { inductors which can be combined. }\end{aligned} \quad \mathrm{f}_{\mathrm{o}}=\frac{\omega_{\mathrm{o}}}{2 \cdot \pi}$
(Hz)

Steady-state of Final conditions

If a circuit has been connected for "a long time", then it has reached a steady state condition. that means the currents and voltages are no longer changing.

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}=0 \quad{ }^{\mathrm{v}} \mathrm{~L}=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}=0
$$

no voltage means it looks like a short

Examples

Ex 1
Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

$\omega_{\mathrm{o}}:=\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}}}$
$\omega_{o}=11547 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\mathrm{f}_{\mathrm{o}}=\frac{\omega_{\mathrm{o}}}{2 \cdot \pi}=1838 \cdot \mathrm{~Hz}$

The current through a 0.3 mH inductor is shown below. Make an accurate drawing of the inductor voltage.
Make reasonable assumptions where necessary. Label your graph.

$0-2 \mu \mathrm{~s}: \quad$ No change in current, so: ${ }^{\mathrm{v}} \mathrm{L}=0$
$2 \mu \mathrm{~s}-4 \mu \mathrm{~s}: \quad{ }^{\mathrm{v}} \mathrm{L}_{\mathrm{L}}=\mathrm{L} \cdot \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=0.3 \cdot \mathrm{mH} \cdot \frac{-0.6 \cdot \mathrm{~A}}{2 \cdot \mu \mathrm{~s}}=-90 \cdot \mathrm{~V}$
$4 \mu \mathrm{~s}-8 \mu \mathrm{~s}$: Initial slope is positive and the final slope is zero, so the voltage must be a triangle that starts at some height and ends at zero.

$$
\begin{aligned}
& \Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}} \mathrm{v}_{\mathrm{L}}(\mathrm{t}) \mathrm{dt} \\
& 0.6 \cdot \mathrm{~A}=\frac{1}{0.3 \cdot \mathrm{mH}} \cdot\left(\frac{4 \cdot \mu \mathrm{~s} \cdot \mathrm{height}}{2}\right) \\
& \text { height }=0.6 \cdot \mathrm{~A} \cdot \frac{0.3 \cdot \mathrm{mH} \cdot 2}{4 \cdot \mu \mathrm{~s}}=90 \cdot \mathrm{~V}
\end{aligned}
$$

$8 \mu \mathrm{~s}-10 \mu \mathrm{~s}$: No change in current, so: $\mathrm{v}_{\mathrm{L}}=0$

Ex 3 Given a voltage, find the current, $\mathrm{L}:=4 \cdot \mathrm{mH}$

$$
\begin{aligned}
\Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})= & \frac{1}{\mathrm{~L}} \cdot \int_{1 \cdot \mu \mathrm{~s}}^{2 \cdot \mu \mathrm{~s}} 20 \cdot \mathrm{~V} \mathrm{dt}=5 \cdot \mathrm{~mA} \\
& \frac{1}{\mathrm{~L}} \cdot \int_{4 \cdot \mu \mathrm{~s}}^{8 \cdot \mu \mathrm{~s}}-10 \cdot \mathrm{Vdt}+5 \cdot \mathrm{~mA}=-5 \cdot \mathrm{~mA} \\
& \frac{1}{\mathrm{~L}} \cdot \int_{8 \cdot \mu \mathrm{~s}}^{10 \cdot \mu \mathrm{~s}} \quad \mathrm{~V}(\mathrm{t}) \mathrm{dt}+-5 \cdot \mathrm{~mA}
\end{aligned}
$$

$$
=\frac{1}{\mathrm{~L}} \cdot \frac{20 \cdot \mathrm{~V} \cdot 2 \cdot \mu \mathrm{~s}}{2}-5 \cdot \mathrm{~mA}=0 \cdot \mathrm{~mA} \quad \text { etc } \ldots
$$

Ex 4 The following circuit has been connected as shown for a long time. Find the energy stored in the
 capacitor and the inductor.

