Lecture 18 notes Second order Transient examples

A. Stolp 10/30/06 2/19/10

Ex. 1 For the circuit shown:

a) Find the transfer function $v_{\rm I}$.

Find the transfer function
$$v_L$$
.

$$V_L(s) = \frac{\frac{1}{\frac{1}{Ls} + \frac{1}{R}}}{\frac{1}{Ls} + \frac{1}{R}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot s}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot s}} \cdot V_S(s) = \frac{1}{1 + \frac{1}{C \cdot s}} \cdot V_S(s) = \frac{s^2}{s^2 + \frac{1}{C \cdot R}} \cdot V_S(s)$$

$$= \frac{V_L(s)}{V_S(s)} = \frac{s^2}{s^2 + \frac{1}{C \cdot R}} \cdot V_S(s) = \frac{s^2}{s^2 + \frac{1}{C \cdot R}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot S}} \cdot V_S(s)$$

$$= \frac{s^2}{s^2 + \frac{1}{C \cdot R}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot S}} \cdot V_S(s)$$

$$= \frac{s^2}{s^2 + \frac{1}{C \cdot R}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot S}} \cdot V_S(s)$$

$$= \frac{s^2}{s^2 + \frac{1}{C \cdot R}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot S}} \cdot V_S(s)$$

$$= \frac{1}{1 + \frac{1}{C \cdot S}}$$

b) Find the characteristic equation for this circuit.

$$0 = s^{2} + \frac{1}{C \cdot R} \cdot s + \frac{1}{L \cdot C} = s^{2} + \frac{3.788 \cdot 10^{4}}{\text{sec}} \cdot s + \frac{9.091 \cdot 10^{9}}{\text{sec}^{2}}$$

Just the denominator set to zero. The solutions of the characteristic equation are the "poles" of the transfer function.

c) Find the differential equation for v_L .

Cross-multiply the transfer function

$$s^{2} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) = \left(s^{2} + \frac{1}{\mathbf{C} \cdot \mathbf{R}} \cdot \mathbf{s} + \frac{1}{\mathbf{L} \cdot \mathbf{C}}\right) \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s})$$

$$s^{2} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) = s^{2} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s}) + \frac{1}{\mathbf{C} \cdot \mathbf{R}} \cdot \mathbf{s} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s}) + \frac{1}{\mathbf{L} \cdot \mathbf{C}} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s})$$

$$\frac{d^{2}}{dt^{2}} \mathbf{v}_{\mathbf{S}}(t) = \frac{d^{2}}{dt^{2}} \mathbf{v}_{\mathbf{L}}(t) + \frac{1}{\mathbf{C} \cdot \mathbf{R}} \cdot \frac{d}{dt} \mathbf{v}_{\mathbf{L}}(t) + \frac{1}{\mathbf{L} \cdot \mathbf{C}} \cdot \mathbf{v}_{\mathbf{L}}(t)$$

$$\frac{d^{2}}{dt^{2}} \mathbf{v}_{\mathbf{S}}(t) = \frac{d^{2}}{dt^{2}} \mathbf{v}_{\mathbf{L}}(t) + \frac{3.788 \cdot 10^{4}}{\sec} \cdot \frac{d}{dt} \mathbf{v}_{\mathbf{L}}(t) + \frac{9.091 \cdot 10^{9}}{\sec^{2}} \cdot \mathbf{v}_{\mathbf{L}}(t)$$

d) What are the solutions to the characteristic equation?

$$s_{1} = \frac{-3.788 \cdot 10^{4}}{2} + \frac{1}{2} \cdot \sqrt{\left(3.788 \cdot 10^{4}\right)^{2} - 4 \cdot \left(9.091 \cdot 10^{9}\right)} = -1.894 \cdot 10^{4} + 9.345 \cdot 10^{4} j$$

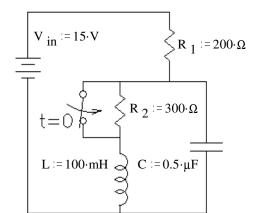
$$s_{2} = \frac{-3.788 \cdot 10^{4}}{2} - \frac{1}{2} \cdot \sqrt{\left(3.788 \cdot 10^{4}\right)^{2} - 4 \cdot \left(9.091 \cdot 10^{9}\right)} = -1.894 \cdot 10^{4} - 9.345 \cdot 10^{4} j$$

e) What type of response do you expect from this circuit?

The solutions to the characteristic equation are complex so the response will be underdamped.

ECE 2210 Lecture 18 notes p2

Ex. 2 Analysis of the circuit shown yields the characteristic equation below. The switch has been in the open position for a long time and is closed (as shown) at time t = 0. Find the initial and final conditions and write the full expression for $i_{\tau}(t)$, including all the constants that you find.



$$s^{2} + \left(\frac{1}{C \cdot R_{1}}\right) \cdot s + \left(\frac{1}{L \cdot C}\right) = 0$$

$$\left(\frac{1}{C \cdot R_{1}}\right) = 1 \cdot 10^{4} \cdot \frac{1}{\sec}$$

$$\left(\frac{1}{L \cdot C}\right) = 2 \cdot 10^{7} \cdot \frac{1}{\sec^{2}}$$

$$\left(\frac{1}{\text{L-C}}\right) = 2 \cdot 10^7 \cdot \frac{1}{\text{sec}^2}$$

$$s^{2} + 10000 \cdot \frac{1}{\text{sec}} \cdot s + 2 \cdot 10^{7} \cdot \frac{1}{\text{sec}^{2}} = 0$$

$$s_1 := \left[\frac{-10000}{2} + \frac{1}{2} \cdot \sqrt{(10000)^2 - 4 \cdot (2 \cdot 10^7)}\right] \cdot sec^{-1}$$

$$\mathbf{s}_{1} := \left[\frac{-10000}{2} + \frac{1}{2} \cdot \sqrt{(10000)^{2} - 4 \cdot (2 \cdot 10^{7})} \right] \cdot \sec^{-1} \qquad \qquad \mathbf{s}_{2} := \left[\frac{-10000}{2} - \frac{1}{2} \cdot \sqrt{(10000)^{2} - 4 \cdot (2 \cdot 10^{7})} \right] \cdot \sec^{-1}$$

$$s_1 = -2764 \cdot sec^{-1}$$

$$s_2 = -7236 \cdot sec^{-1}$$

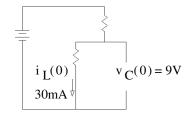
s₁ and s₂ are both real and distinct, overdamped

Find the initial conditions:

Before the switch closed, the inductor current was:
$$\frac{15 \cdot V}{R_1 + R_2} = 30 \cdot mA = i_L(0)$$

Before the switch closed, the capacitor voltage was:

$$\frac{R_2}{R_1 + R_2} \cdot (15 \cdot V) = 9 \cdot V = v_C(0)$$

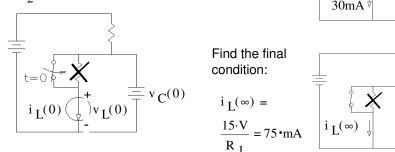


When the switch is closed, the inductor is suddenly in parallel with the capacitor, and:

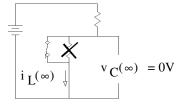
$$v_{L}(0) = v_{C}(0)$$

$$\frac{d}{dt}i_{L}(0) = \frac{1}{L} \cdot v_{L}(0) =$$

$$\frac{1}{L} \cdot 9 \cdot V = 90 \cdot \frac{A}{\text{sec}}$$



$$i_{L}(\infty) = \frac{15 \cdot V}{R_{1}} = 75 \cdot mA$$



General solution for the overdamped condition: $i_L(t) = i_L(\infty) + B \cdot e^{s_1 \cdot t} + D \cdot e^{s_2 \cdot t}$

Initial conditions:
$$i_L(0) = \frac{15 \cdot V}{R_1 + R_2} = i_L(\infty) + B + D$$
, so $B = i_L(0) - i_L(\infty) - D = 30 \cdot mA - 75 \cdot mA - D$

$$\frac{d}{dt}i_{L}(0) = 90 \cdot \frac{A}{sec} = s_{1} \cdot B + s_{2} \cdot D = s_{1} \cdot (-45 \cdot mA - D) + s_{2} \cdot D = s_{1} \cdot (-45 \cdot mA) - s_{1} \cdot D + s_{2} \cdot D$$

$$90 \cdot \frac{A}{\text{sec}} - s_1 \cdot (-45 \cdot \text{mA})$$
solve for D & B: $D := \frac{90 \cdot A}{-s_1 + s_2}$

$$D = 7.69 \cdot \text{mA}$$

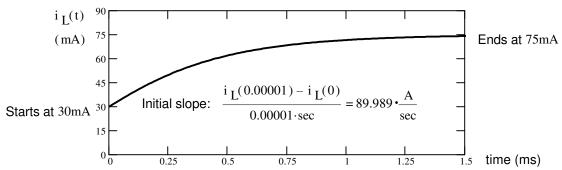
$$B := -45 \cdot \text{mA} - D$$

$$B = -52.7 \cdot \text{mA}$$

$$B := -45 \cdot mA - D$$

$$B = -52.7 \cdot mA$$

Plug numbers back in: $i_L(t) = 75 \cdot mA - 52.7 \cdot mA \cdot e^{-2764t} + 7.69 \cdot mA \cdot e^{-7236t}$



Ex. 3

Analysis of the circuit shown yields the characteristic equation and s values below. The switch has been in the closed position for a long time and is opened (as shown) at time t = 0. Find the initial and final conditions and write the full expression for $v_C(t)$, including all the constants.

$$0 = s^{2} + \frac{R_{1}}{L} \cdot s + \frac{1}{L \cdot C}$$

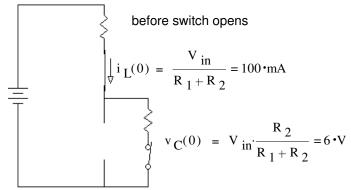
$$s_{1} := (-250 + 10^{4} \cdot j) \cdot \frac{1}{\text{sec}} , \qquad s_{2} := (-250 - 10^{4} \cdot j) \cdot \frac{1}{\text{sec}}$$

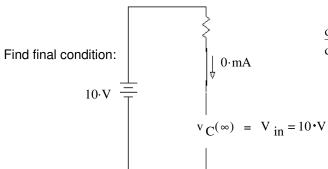
Solution:

$$\alpha := -250 \cdot \frac{1}{\text{sec}}$$

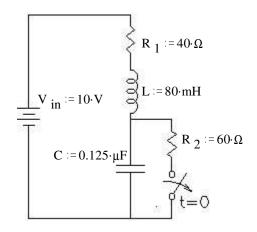
$$\omega := 10000 \cdot \frac{\text{rad}}{\text{sec}}$$

Initial conditions:

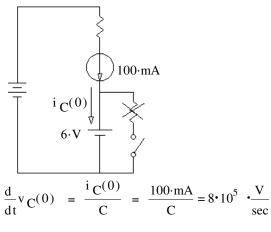




ECE 2210 Lecture 18 notes p3



just after the switch opens



$$B = v_{C}(0) -$$

$$B := 6 \cdot V - 10 \cdot V$$

$$B = -4 \cdot V$$

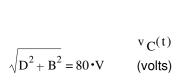
$$\frac{\mathrm{d}}{\mathrm{d}} \mathbf{v} \, \mathbf{C}(0) = \alpha \cdot \mathbf{B} + \mathbf{D} \cdot \mathbf{w}$$

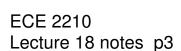
Find constants:
$$v_{\mathbf{C}}(0) = v_{\mathbf{C}}(\infty) + B$$
 $B = v_{\mathbf{C}}(0) - v_{\mathbf{C}}(\infty)$ $B := 6 \cdot V - 10 \cdot V$ $B = -4 \cdot V$
$$\frac{d}{dt} v_{\mathbf{C}}(0) = \alpha \cdot B + D \cdot \omega$$
 $D := \frac{8 \cdot 10^5 \cdot \frac{V}{\text{sec}} - \alpha \cdot B}{\omega}$ $D = 79.9 \cdot V$

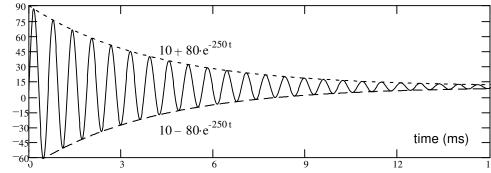
Write the full expression for $v_C(t)$, including all the constants that you find.

$$v_{C}(t) = e^{\alpha t} \cdot (B \cdot \cos(\omega \cdot t) + D \cdot \sin(\omega \cdot t)) + v_{C}(\infty)$$

$$v_{\mathbf{C}}(t) := e^{-250t} \cdot \left(-4 \cdot V \cdot \cos\left(10^4 \cdot t\right) + 79.9 \cdot V \cdot \sin\left(10^4 \cdot t\right) \right) + 10 \cdot V$$







ECE 2210 Lecture 18 notes p4

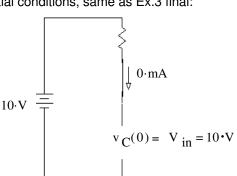
Ex. 4 Ex.3 Backwards, switch closes at t = 0

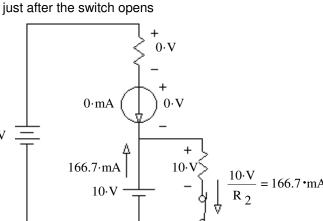
Characteristic eq.:
$$0 = s^2 + \left(\frac{1}{C \cdot R_2} + \frac{R_1}{L}\right) \cdot s + \left(1 + \frac{R_1}{R_2}\right) \cdot \frac{1}{L \cdot C}$$

$$s_1 := -1.257 \cdot 10^3 \cdot \frac{1}{\text{sec}}$$

$$s_1 := -1.257 \cdot 10^3 \cdot \frac{1}{\text{sec}}$$
 $s_2 := -1.326 \cdot 10^5 \cdot \frac{1}{\text{sec}}$

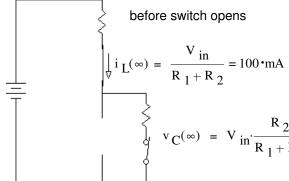
Initial conditions, same as Ex.3 final:





 $R_1 := 40 \cdot \Omega$

Find final condition:



$$\begin{cases} v_{C}(\infty) = V_{\text{in}} \cdot \frac{R_{2}}{R_{1} + R_{2}} = 6 \cdot V \end{cases} = \frac{\frac{d}{dt} v_{C}(0)}{C} = \frac{\frac{i_{C}(0)}{C}}{C} = \frac{-166.7 \cdot \text{mA}}{C} = -1.334 \cdot 10^{6} \cdot \frac{V}{\text{sec}}$$

Find constants:
$$v_C(0) = v_C(\infty) + B + D$$
 , so $B = v_C(0) - v_C(\infty) - D = 10 \cdot V - 6 \cdot V - D = 4 \cdot V - D$
$$\frac{d}{dt} v_C(0) = -1.334 \cdot 10^6 \cdot \frac{V}{sec} = s_1 \cdot B + s_2 \cdot D = s_1 \cdot (4 \cdot V - D) + s_2 \cdot D = s_1 \cdot (4 \cdot V) - s_1 \cdot D + s_2 \cdot D$$

$$D := \frac{-1.334 \cdot 10^{6} \cdot \frac{V}{\text{sec}} - s_{1} \cdot (4 \cdot V)}{-s_{1} + s_{2}}$$

$$D = 10.12 \cdot V$$

$$B := 4 \cdot V - D$$

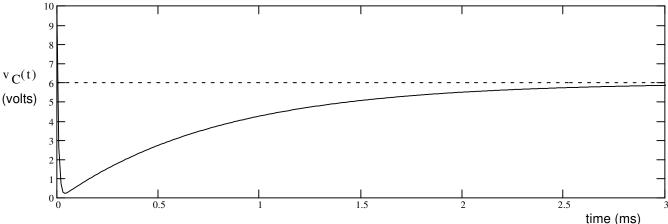
$$B = -6.12 \cdot V$$

$$D = 10.12 \cdot V$$

$$\mathbf{B} := 4 \cdot \mathbf{V} - \mathbf{D}$$

$$B = -6.12 \cdot V$$

$$v_C(t) = 6 \cdot V - 6.12 \cdot V \cdot e^{-1257t} + 10.12 \cdot V \cdot e^{-132600 \cdot t}$$



ECE 2210 Lecture 18 notes p4

Ex. 5 Analysis of a circuit (not pictured) yields the characteristic equation below.

$$0 = s^2 + 400 \cdot s + 400000$$

 $R := 80 \cdot \Omega$

 $L := 20 \cdot mH$

 $C := 2 \cdot \mu F$

Further analysis yields the following initial and final conditions:

$$i_{I}(0) = 120 \cdot mA$$

$$v_{I}(0) = -3 \cdot V$$

$$v_{\mathbf{C}}(0) = 7 \cdot V$$

$$v_{C}(0) = 7 \cdot V$$
 $i_{C}(0) = -80 \cdot mA$

$$i_{I}(\infty) = 800 \cdot mA$$
 $v_{I}(\infty) = 0 \cdot V$

$$v_{I}(\infty) = 0.V$$

$$v_{\mathbf{C}}(\infty) = 12 \cdot V$$

$$v_{\mathbf{C}}(\infty) = 12 \cdot V$$
 $i_{\mathbf{C}}(\infty) = 0 \cdot mA$

Write the full expression for $i_1(t)$, including all the constants that you find. $i_1(t) = ?$

$$i_{I}(t) =$$

Solution:

$$\frac{400}{2} = 200$$

$$\frac{400}{2} = 200 \qquad \qquad \frac{\sqrt{400^2 - 4.400000}}{2} = 600j$$

$$s_1 := (-200 + 600 \cdot j) \cdot \frac{1}{se}$$

$$s_1 \coloneqq (-200 + 600 \cdot j) \cdot \frac{1}{sec} \qquad \qquad \text{and} \qquad s_2 \coloneqq (-200 - 600 \cdot j) \cdot \frac{1}{sec}$$

$$\alpha := \text{Re}(s_1)$$

$$\alpha := \text{Re}(s_1)$$
 $\alpha = -200 \cdot \text{sec}^{-1}$

$$\omega := \operatorname{Im}(s_1) \qquad \omega = 600 \cdot \sec^{-1}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} i_{\mathrm{L}}(0) = \frac{v_{\mathrm{L}}(0)}{L} = \frac{-3 \cdot V}{L} = -150 \cdot \frac{A}{\mathrm{sec}}$$

General solution for the underdamped condition: $i_L(t) = i_L(\infty) + e^{\alpha t} \cdot (B \cdot \cos(\omega \cdot t) + D \cdot \sin(\omega \cdot t))$

Find constants:

$$i_{I}(0) = i_{I}(\infty) + B$$

$$B = i_{I}(0) - i_{I}(\infty)$$

$$B := 120 \cdot mA - 800 \cdot mA$$

$$B = -680 \cdot mA$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{i}\,L(0) = \alpha \cdot B + D \cdot \alpha$$

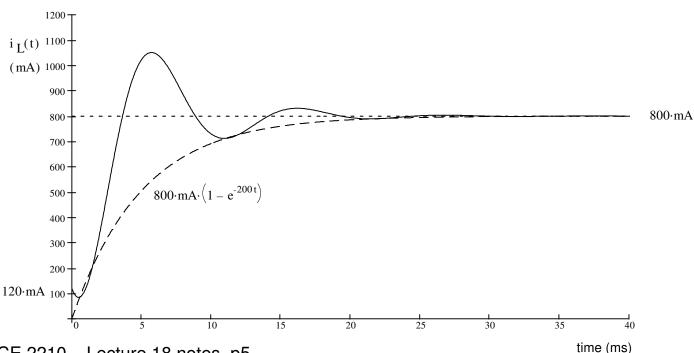
$$\frac{d}{dt}i_{L}(0) = \alpha \cdot B + D \cdot \omega$$

$$D := \frac{-150 \cdot \frac{A}{\sec} - \alpha \cdot B}{\omega}$$

$$D = -476.667 \cdot mA$$

Write the full expression for i₁(t), including all the constants that you find.

$$i_{L}(t) := 800 \cdot mA + e^{-200t} \cdot (-680 \cdot mA \cdot cos(600 \cdot t) - 477 \cdot mA \cdot sin(600 \cdot t))$$



Lecture 18 notes p5 ECE 2210

Analysis of a circuit (not pictured) yields the characteristic equation below.

$$0 = s^2 + 800 \cdot s + 160000$$

$$R := 60 \cdot \Omega$$

$$L := 350 \cdot mH$$
 $C := 20 \cdot \mu F$ $V_{in} := 12 \cdot V$

$$C := 20 \cdot \mu F$$

$$V_{in} := 12 \cdot V$$

Further analysis yields the following initial and final conditions:

$$i_{I}(0) = 30 \cdot mA$$

$$v_L(0) = -7 \cdot V$$

$$v_{\mathbf{C}}(0) = 5 \cdot V$$

$$v_{C}(0) = 5 \cdot V$$
 $i_{C}(0) = 70 \cdot mA$

$$i_{I}(\infty) = 90 \cdot mA$$
 $v_{I}(\infty) = 0 \cdot V$

$$v_{I}(\infty) = 0.V$$

$$v_C(\infty) = 12 \cdot V$$

$$v_{\mathbf{C}}(\infty) = 12 \cdot V$$
 $i_{\mathbf{C}}(\infty) = 0 \cdot mA$

Write the full expression for $i_I(t)$, including all the constants that you find. $i_I(t) = ?$

$$i_{I}(t) =$$

Include units in your answer

Solution:

$$\frac{-800 + \sqrt{800^2 - 4 \cdot 160000}}{2} = -400 \qquad \text{s }_1 := -400 \cdot \frac{1}{\text{sec}} \qquad \text{s }_2 := -400 \cdot \frac{1}{\text{sec}} \qquad \text{s}_1 \text{ and s}_2 \text{ are the same,}$$

$$s_1 := -400 \cdot \frac{1}{\sec}$$

$$s_2 := -400 \cdot \frac{1}{sec}$$

Initial slope:

$$\frac{d}{dt}i_L(0) = \frac{v_L(0)}{L} = \frac{-7 \cdot V}{L} = -20 \cdot \frac{A}{sec}$$

General solution for the critically damped condition: $i_{I}(t) = i_{I}(\infty) + B \cdot e^{s_{I}t} + D \cdot t \cdot e^{s_{I}t}$

Find constants:

$$i_{I}(0) = i_{I}(\infty) + B$$

$$B = i_L(0) - i_L(\infty)$$

$$B := 30 \cdot mA - 90 \cdot mA$$

$$B = -60 \cdot mA$$

$$\frac{d}{dt}i_L(0) = B \cdot s + D \qquad D := -20 \cdot \frac{A}{sec} - B \cdot s_1 \qquad D = -44 \cdot \frac{A}{sec}$$

$$D := -20 \cdot \frac{A}{sac} - B \cdot s_1$$

$$D = -44 \cdot \frac{A}{\text{sec}}$$

Write the full expression for
$$i_L(t)$$
, including all the constants that you find.
$$i_L(t) := 90 \cdot mA - 60 \cdot mA \cdot e^{-\frac{400}{sec} \cdot t} - 44 \cdot \frac{A}{sec} \cdot t \cdot e^{-\frac{400}{sec} \cdot t}$$

