Name

ECE 2210 / 00 Homework DC6 Due: Tue, 9/10/24

Thevenin & Norton equivalent circuits

1. For the circuit shown at right, use Thevenin's theorem to find the current through the 120- Ω resistor, R₄.

ECE 2210 / 00 homework DC6 p2

2. For the circuit shown, use Norton's theorem to find the value of the current in R_5 . Hint: You can find I_N either by calculation of the open circuit voltage (V_{OC}) and R_N or by direct calculation of the short-circuit current (I_{SC}) , however, there is something about the values of the resistors which makes the second method easier than it would at first appear.

Source resistance

- 3. The terminal voltage of a car's battery drops from 12.5 V to 8.5 volts when starting. The starter motor draws 80 A of current.
 - a) Draw the voltage-source model (Thevenin equivalent) of this battery. Include the values of V_S and R_S.

b) Draw the current-source model (Norton equivalent) of this battery. Include the values of $I_{\rm S}$ and $R_{\rm S}$.

c) Which of these two models is more appropriate for the car battery?

d) What terminal voltage would you expect if this battery were being charged at 20 A?

Answers1. $18 \cdot \text{mA}$ 2. $0.19 \cdot \text{A}$ 3. a) $V_S = 12.5 \cdot \text{V}$ $R_S := 0.05 \cdot \Omega$ b) $I_S = 250 \cdot \text{A}$ $R_S := 0.05 \cdot \Omega$ c) Thevenind) $13.5 \cdot \text{V}$