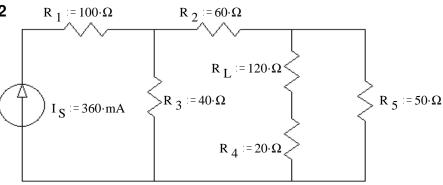

Thevenin & Norton equivalent circuits

1. a) For the circuit shown, find and draw the Thevenin equivalent circuit. The load resistor is $R_{\rm I}$.

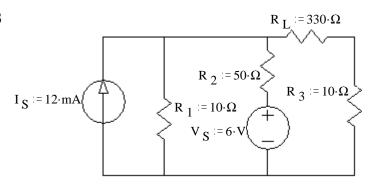


b) Find the voltage across R_L (V_L) and the current through R_L (I_L) using your Thevenin equivalent circuit.

c) Find and draw the Norton equivalent circuit.

ECE 2210 / 00 homework DC5 p2

2. a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is $R_{\rm L}$.


b) Find and draw the Norton equivalent of the same circuit.

c) Find voltage across the load $(\boldsymbol{V}_{RL}).$

d) Choose a value of load resistor $(R_{\underline{I}})$ to maximize the power dissipation in the load and find that power.

ECE 2210 / 00 homework DC5 p3

3. a) The load resistor is $R_L^{}$, and is in a strange place in this circuit. Hint: use superposition to find V_{Th} . 2nd hint: Nodal analysis is even easier.

- b) Find and draw the Norton equivalent circuit.
- c) Find \boldsymbol{V}_{L} and \boldsymbol{I}_{L} using your Norton equivalent circuit.

Answers

- 1. a) 6·V , 14·kΩ 2. a) 4.8·V , 53.33·Ω
- b) 90·mA , 53.33·Ω b) 2.77·V, 231·μA
- c) $429 \cdot \mu A$, $14 \cdot k\Omega$

- 3. a) $1.1 \cdot V$, $18.3 \cdot \Omega$
- c) 3.32·V b) $60 \cdot \text{mA}$, $18.3 \cdot \Omega$ c) $3.16 \cdot \text{mA}$, $1.042 \cdot \text{V}$