
ECE2210 Final given: Fall 18

Closed Book, Closed notes except preprinted sheet, Calculators OK. Show all work to receive credit. Circle answers, show units, and round off reasonably

 (19 pts) a) Find the s-type transfer function of the circuit shown. V_i is the input and V_O is the output. You <u>MUST</u> show work to get credit. Simplify your expression for H(s) so that the dependent of a second second

expression for H(s) so that the denominator is a simple polynomial.

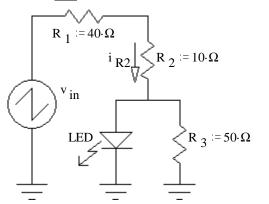
 $\mathbf{H}(s) = ?$

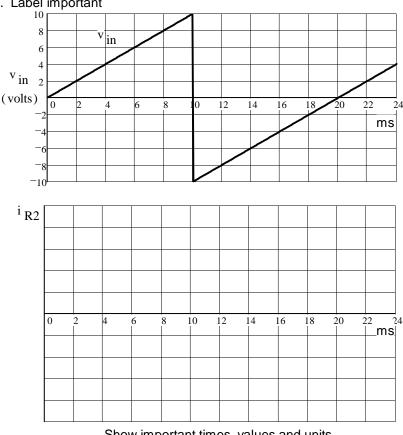
How do you know?

b) Find the characteristic equation of the circuit shown.

- c) The solutions to the characteristic equation are called the _____ of the transfer function.
- d) Does the transfer function have one or more zeros? If yes, express it (them) in terms of R1, R2, C, & L.
- 2. (26 pts) Assume that diodes D_1 and D_3 DO conduct, and that diode D_2 does NOT conduct.
- LED $R_1 := 40 \cdot \Omega$ a) Find I_{R4} , V_{D2} , I_{R1} , I_{D1} ,& I_{D3} based on these Cond. assumptions. Stick with these assumptions even if your answers come out absurd. $^{1}D1$ $I_{R4} = ? V_{D2} = ? I_{R1} = ?$ $V_{S} = 1.2$ $R_3 = 160 \cdot \Omega$ $I_{S} = 50 \cdot mA$ $R_{4} := 50 \cdot \Omega$ $I_{D1} = ? I_{D3} = ?$ $R_2 := 80 \cdot \Omega$ Notes: The calculation of ${\rm I}_{R1}$ may be D_2 I_{R4} difficult unless you write a nodal equation NOT or change the current source and R₂ into a cond. Thevenin equivalent. Don't refer to nodal voltages unless you specify a ground. D I_{D3} Cond.

b) Based on the numbers above, was the assumption about D_1 correct? yes no (circle one) How do you know? (Specifically show a value which is or is not within a correct range.)


c) Was the assumption about D₂ correct? yes no (circle one) How do you know? (show value(s))


d) Was the assumption about D₃ correct? yes no (circle one)

ECE2210 Final given: Fall 18 p1

3. (20 pts) A voltage waveform (top dark line) is applied to the circuit shown. Accurately draw the i_{R2} current waveform. Label important 10 times and current levels.

ECE2210 Final given: Fall 18 p2

Show important times, values and units

- 4. (36 pts) A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).
 - a) Assume the switch has been open for a long time and you measure the nodal voltage at the collector of Q₂ as shown on the drawing. Find the following: P_{O2} = ? (The approximate power dissipated by Q_2 . $\beta_2 = ?$
- Inductive load $L_{L} = 50 \cdot mH$ $R_2 := 100 \cdot \Omega$ $R_{L} := 3 \cdot \Omega$ $V_{C2} := 2 \cdot V$ Q 2 R₁ Q 1 $BB = 3 \cdot V$ $\beta_1 := 80$

 $V_{CC} = 5 \cdot V$

b) When the switch is open, you would like transistor Q_2 to saturate. What minimum β_2 would be required to achieve saturation?

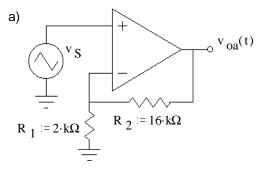
c) You replace Q_2 . So $\beta_2 = 50$ Use this β from now on. Find $P_{Q2} = ?$

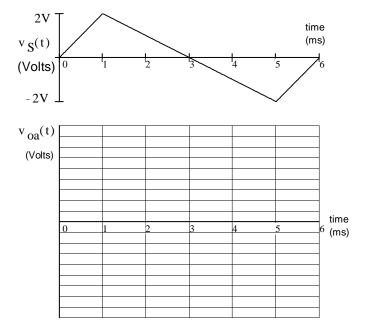
d) When the switch is closed, you would like transistor Q_1 to saturate.

Find the maximum value of R_1 , so that transistor Q_1 will be in saturation. $\beta_1 = 80$

Use this value of R_1 for the remainder of the problem

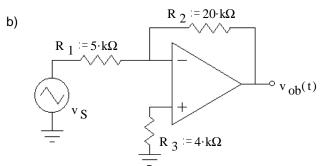
e) If the switch is closed for a long time, what voltage should you measure at the collector of Q_2 ? V $_{C2}$ = ?

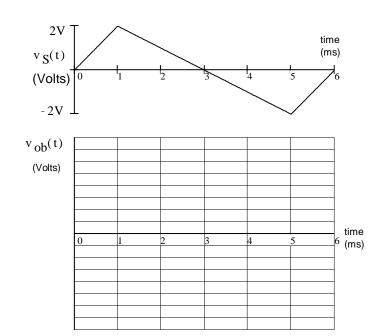

(circle one)

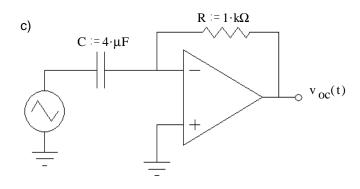

E) whenever the switch is open.

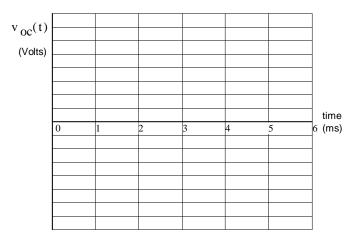
F) whenever the switch is closed.

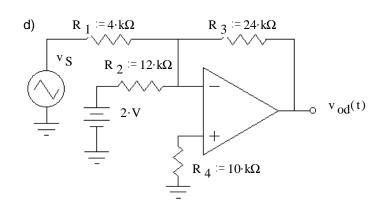
- f) The diode in this circuit conducts a significant current:
 A) never.
 B) always.
 C) when the switch opens.
 D) when the switch closes.
- g) R₁, is that found in part d). The switch is opened and closed a few times.
 What is the maximum diode current you expect. (Answer 0 if it never conducts.)
- h) Transistor Q_1 goes bad and $\beta_1 = 40$ The switch is closed for a long time, how much current will flow into the base of Q_2 ? $I_{B2} = ?$

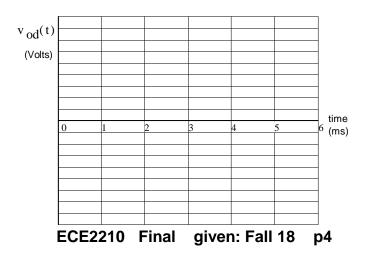

5. (30 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, I'll assume you don't know. Don't forget to show inversions. All op-amps are powered by ± 12 V power supplies.

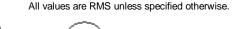


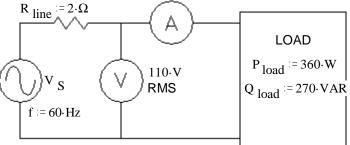



p4


ECE2210 Final given: Fall 18 5, continued, the input is repeated at right.

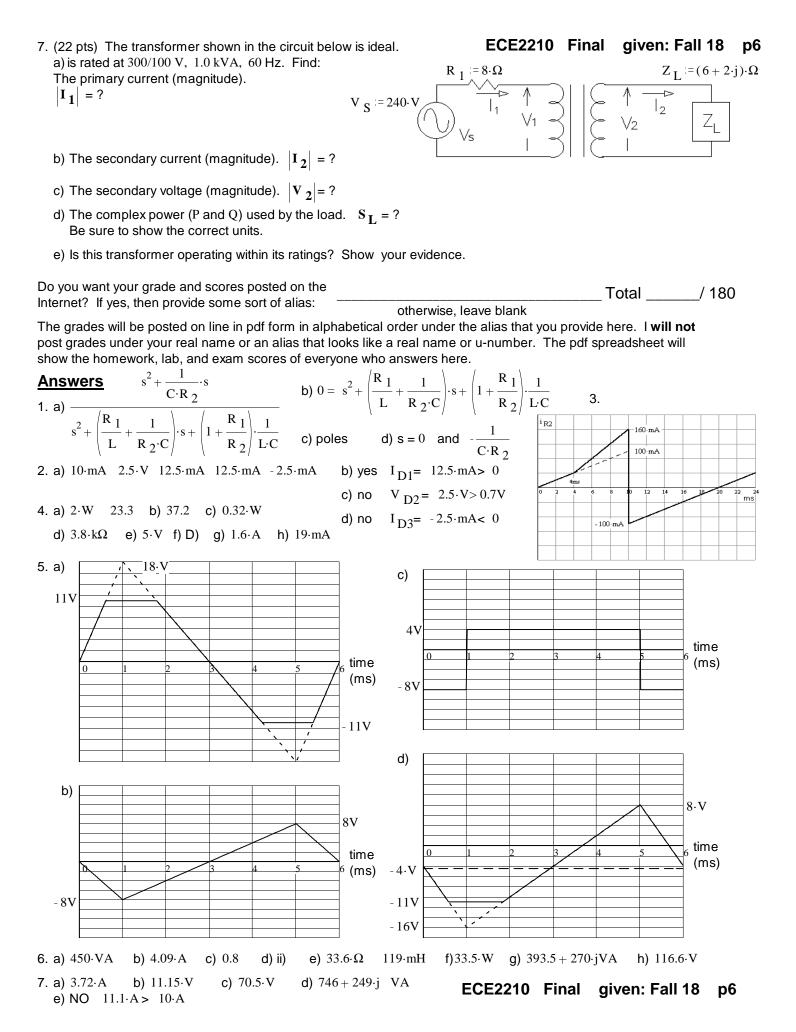






ECE2210 Final given: Fall 18 p5

- 6. (25 pts) The AC load uses 360W and 270VAR. The voltmeter measures 110 V.
 - a) Find the apparent power. $|\mathbf{S}| = ?$ Give with correct units


b) What does the ammeter measure? Hint: $|\mathbf{S}| = |\mathbf{V}| \cdot |\mathbf{I}|$

- c) Find the power factor of the load. pf = ?
- d) The power factor is: i) leading ii) lagging (circle one) i) lagging, because the Q_{load} is positive
- e) The load consists of two parts in parallel. Draw the parts in the box above and find the values.

f) How much power does R_{line} waste? $P_{Rline} = ?$

g) Find the complex power provided by the source. S $_{S}$ = $P_{S} + j \cdot Q_{S}$ = ?

h) What is the source voltage (magnitude)? $|\mathbf{V}_{S}| = ?$ Remember, you can't add magnitudes of complex numbers.

