ECE2210 Final given: Fall 18

Closed Book, Closed notes except preprinted sheet, Calculators OK.
Show all work to receive credit. Circle answers, show units, and round off reasonably

1. (19 pts) a) Find the s-type transfer function of the circuit shown. V_{i} is the input and V_{O} is the output. You MUST show work to get credit. Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial.
$\mathbf{H}(\mathrm{s})=$?

b) Find the characteristic equation of the circuit shown.
c) The solutions to the characteristic equation are called the \qquad of the transfer function.
d) Does the transfer function have one or more zeros? If yes, express it (them) in terms of $R_{1}, R_{2}, C, \& L$.
2. (26 pts) Assume that diodes D_{1} and D_{3} DO conduct, and that diode D_{2} does NOT conduct.
a) Find $\mathrm{I}_{\mathrm{R} 4}, \mathrm{~V}_{\mathrm{D} 2}, \mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{D} 1}, \& \mathrm{I}_{\mathrm{D} 3}$ based on these assumptions. Stick with these assumptions even if your answers come out absurd.
$\mathrm{I}_{\mathrm{R} 4}=$? $\quad \mathrm{V}_{\mathrm{D} 2}=$? $\quad \mathrm{I}_{\mathrm{R} 1}=$?
$\mathrm{I}_{\mathrm{D} 1}=$? $\mathrm{I}_{\mathrm{D} 3}=$?
Notes: The calculation of $\mathrm{I}_{\mathrm{R} 1}$ may be difficult unless you write a nodal equation or change the current source and R_{2} into a Thevenin equivalent. Don't refer to nodal voltages unless you specify a ground.

b) Based on the numbers above, was the assumption about D_{1} correct? yes no (circle one) How do you know? (Specifically show a value which is or is not within a correct range.)
c) Was the assumption about D_{2} correct? yes no (circle one) How do you know? (show value(s))
d) Was the assumption about D_{3} correct? yes no (circle one) How do you know?
3. (20 pts) A voltage waveform (top dark line) is applied to the circuit shown. Accurately draw the $\mathrm{i}_{\mathrm{R} 2}$ current waveform. Label important times and current levels.

Show important times, values and units
4. (36 pts) A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).
a) Assume the switch has been open for a long time and you measure the nodal voltage at the collector of Q_{2} as shown on the drawing. Find the following: ${ }^{\mathrm{P}} \mathrm{Q} 2=$? (The approximate power dissipated by Q_{2}.
$\beta_{2}=$?
b) When the switch is open, you would like transistor Q_{2} to saturate. What minimum β_{2} would be required to achieve saturation?

c) You replace Q_{2}. So $\beta_{2}:=50$ Use this β from now on. Find $\mathrm{P}_{\mathrm{Q} 2}=$?
d) When the switch is closed, you would like transistor Q_{1} to saturate.

Find the maximum value of R_{1}, so that transistor Q_{1} will be in saturation. $\quad \beta_{1}=80$

Use this value of R_{1} for the remainder of the problem
e) If the switch is closed for a long time, what voltage should you measure at the collector of Q_{2} ? $\mathrm{V}_{\mathrm{C} 2}=$?
f) The diode in this circuit conducts a significant current: (circle one)
A) never.
C) when the switch opens.
E) whenever the switch is open.
B) always.
D) when the switch closes.
F) whenever the switch is closed.
g) R_{1}, is that found in part d). The switch is opened and closed a few times.

What is the maximum diode current you expect. (Answer 0 if it never conducts.)
h) Transistor Q_{1} goes bad and $\beta_{1}:=40$

The switch is closed for a long time, how much current will flow into the base of Q_{2} ? $\mathrm{I}_{\mathrm{B} 2}=$?
5. (30 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, l'll assume you don't know. Don't forget to show inversions. All op-amps are powered by $\pm 12 \mathrm{~V}$ power supplies.
a)

ECE2210 Final given: Fall 18 p4

 5 , continued, the input is repeated at right.b)

d)
$:=4 \cdot \mathrm{k} \Omega$
$\mathrm{R}_{3}:=24 \cdot \mathrm{k} \Omega$

ECE2210 Final given: Fall 18 p5

6. (25 pts) The AC load uses 360 W and 270VAR. The voltmeter measures 110 V .
a) Find the apparent power. $|\mathbf{S}|=$?

Give with correct units
b) What does the ammeter measure? Hint: $\quad|\mathbf{S}|=|\mathbf{V}| \cdot|\mathbf{I}|$
c) Find the power factor of the load. $\mathrm{pf}=$?
d) The power factor is: i) leading
ii) lagging (circle one)
i) lagging, because the $Q_{\text {load }}$ is positive
e) The load consists of two parts in parallel. Draw the parts in the box above and find the values.
f) How much power does $R_{\text {line }}$ waste? $\quad P_{\text {Rline }}=$?
g) Find the complex power provided by the source. $\mathbf{S}_{\mathbf{S}}={ }^{P}{ }_{S}+\mathrm{j} \cdot \mathrm{Q}_{\mathrm{S}}=$?
h) What is the source voltage (magnitude)? $\left|\mathbf{V}_{\mathbf{S}}\right|=$? Remember, you can't add magnitudes of complex numbers.
7. (22 pts) The transformer shown in the circuit below is ideal. a) is rated at $300 / 100 \mathrm{~V}, 1.0 \mathrm{kVA}, 60 \mathrm{~Hz}$. Find: The primary current (magnitude).
$\left|\mathrm{I}_{1}\right|=$?
b) The secondary current (magnitude). $\left|\mathbf{I}_{\mathbf{2}}\right|=$?

c) The secondary voltage (magnitude). $\left|\mathbf{V}_{\mathbf{2}}\right|=$?
d) The complex power (P and Q) used by the load. $\mathbf{S}_{\mathbf{L}}=$?

Be sure to show the correct units.
e) Is this transformer operating within its ratings? Show your evidence.

Do you want your grade and scores posted on the Internet? If yes, then provide some sort of alias: \qquad Total \qquad / 180 otherwise, leave blank
The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name or an alias that looks like a real name or u-number. The pdf spreadsheet will show the homework, lab, and exam scores of everyone who answers here.
Answers $\quad s^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}} \cdot \mathrm{~s}$
b) $0=\mathrm{s}^{2}+$
$\left(\frac{\mathrm{R}_{1}}{\mathrm{~L}}+\frac{1}{\mathrm{R}_{2} \cdot \mathrm{C}}\right) \cdot \mathrm{S}+\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right) \cdot \frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
3.

1. a) $\overline{s^{2}+\left(\frac{R_{1}}{L}+\frac{1}{R_{2} \cdot C}\right) \cdot s+\left(1+\frac{R_{1}}{R_{2}}\right) \cdot \frac{1}{L \cdot C}}$
c) poles
d) $\mathrm{S}=0$ and $-\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}}$
2. a) $10 \cdot \mathrm{~mA} \quad 2.5 \cdot \mathrm{~V} \quad 12.5 \cdot \mathrm{~mA} \quad 12.5 \cdot \mathrm{~mA} \quad-2.5 \cdot \mathrm{~mA}$
b) yes $\mathrm{I}_{\mathrm{D} 1}=12.5 \cdot \mathrm{~mA}>0$
c) $\mathrm{no} \quad \mathrm{V}_{\mathrm{D} 2}=2.5 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
3. a) $2 \cdot \mathrm{~W}$
23.3
b) 37.2
c) $0.32 \cdot \mathrm{~W}$
d) no
$\mathrm{I}_{\mathrm{D} 3}=-2.5 \cdot \mathrm{~mA}<0$

4. a)

b)

5. a) $450 \cdot \mathrm{VA}$
b) $4.09 \cdot \mathrm{~A}$
c) 0.8
d) ii)
e) $33.6 \cdot \Omega$
$119 \cdot \mathrm{mH}$
f) $33.5 \cdot \mathrm{~W}$
g) $393.5+270 \cdot \mathrm{jVA}$
h) $116.6 \cdot \mathrm{~V}$
6. a) $3.72 \cdot \mathrm{~A}$
b) $11.15 \cdot \mathrm{~V}$
c) $70.5 \cdot \mathrm{~V}$
d) $746+249 \cdot \mathrm{j}$ VA
e) $\mathrm{NO} \quad 11.1 \cdot \mathrm{~A}>10 \cdot \mathrm{~A}$

ECE2210 Final given: Fall 18 p6

