1. (19 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is \(R_L \).

b) Find and draw the Norton equivalent of the same circuit.

c) Find the load current using your Thévenin equivalent circuit.

\[
\begin{align*}
\text{V}_S &= 24 \text{ V} \\
R_1 &= 60 \text{ } \Omega \\
R_2 &= 120 \text{ } \Omega \\
R_3 &= 80 \text{ } \Omega \\
R_L &= 100 \text{ } \Omega
\end{align*}
\]

2. (12 pts) a) Find the s-type transfer function of the circuit shown. Consider \(I_C \) as the "output".

You MUST show work to get credit. Simplify your expression for \(H(s) \) so that the denominator is a simple polynomial.

\[
H(s) = \frac{I_C(s)}{I_{in}(s)} = ?
\]

b) How many poles does this transfer function have?

c) How many zeroes does this transfer function have?

If it has 1 or more, express them (probably in terms of \(R_1, R_2, L \) and \(C \)).

3. (15 pts) a) Find: \(V_1 \) & \(I_2 \)

b) How much power does the 2-V battery supply to the circuit?

4. (21 pts) The transformer shown in the circuit below is ideal. It is rated at 220/110 V, 200 VA, 60 Hz

Find the following:

a) The primary current (magnitude).

\[|I_1| = ? \]

b) The primary voltage (magnitude).

\[|V_1| = ? \]

c) The secondary voltage (magnitude).

\[|V_2| = ? \]

d) The power supplied by the source.

\[P_S = ? \]

e) Is this transformer operating within its ratings? Show your evidence.
5. (22 pts) Assume that diode D_1 does **NOT** conduct. Assume that diodes D_2 and D_3 **DO** conduct.

a) Stick with these assumptions even if your answers come out absurd. Find the following:

- $V_{D1} = ____$
- $I_{R3} = ____$
- $I_{D2} = ____$

b) Based on the numbers above, was the assumption about D_1 correct? Circle one: yes no

 How do you know? (Specifically show a value which is or is not within a correct range.)

c) Based on the numbers above, was the assumption about D_2 correct? Circle one: yes no

 How do you know? (Specifically show a value which is or is not within a correct range.)

d) Based on the numbers above, was the assumption about D_3 correct? Circle one: yes no

 How do you know? (Specifically show a value which is or is not within a correct range.)

5. continued

 e) Based on your answers to parts b), c) & d), Circle one:

 i) The real $I_{R3} < I_{R3}$ calculated in part a.

 ii) The real $I_{R3} > I_{R3}$ calculated in part a.

 iii) The real $I_{R3} = I_{R3}$ calculated in part a.

6. (16 pts) A voltage waveform (dotted line) is applied to the circuit shown. **Accurately draw the output waveform (v_o) you expect to see.** Label important times and voltage levels.
7. (34 pts) You have two input voltages to work with. A 1V battery and the waveform (at right).

\[V_B := 1 \text{V} \]

The problems below are op-amp design problems. The answer should be a schematic of a circuit showing the values of all the parts. Use reasonable resistor values (in the 100Ω to 1 MΩ range). Also show how one or both of the sources are hooked up to your circuit. Most circuits won’t need both.

(a) Design a circuit which will output the waveform at right.

(b) Design a circuit which will output the waveform at right.

(c) What power supply or supplies are being used with your op-amps?

(d) Design a circuit which will output the waveform at right.

(e) Design a circuit which will output the waveform at right. Hint: Think nonlinear.
8. (31 pts) A couple of transistors are used to control the current flow through an inductive load.

a) The switch is open, as shown. What is the minimum V_2 needed to insure that transistor Q_2 is in saturation.
\[\beta_2 = 25 \quad V_2 = ? \]

b) Find the power dissipated in transistor Q_2 with this V_2. $P_{Q2} = ?$

c) What if the voltage V_2 was too low so that the base voltage of transistor Q_2 was only $8V$, how much power would be dissipated in transistor Q_2?
\[\text{IF} \quad V_{B2} := 8 \cdot V \quad P_{Q2} = ? \]

d) The transistor Q_2 was selected to be able to handle the power found in part b) (with a 2x factor of safety). What would happen with the V_2 of part c)?

V_2 is NOT too low for the remainder of the problem, that is, use the V_2 found in part a).

e) When the switch is closed, you would like transistor Q_1 to saturate.
What minimum β_1 would be required to achieve saturation?

Use the β_1 for the remainder of the problem.

f) The diode in this circuit conducts a significant current: (circle one)

- A) never.
- B) when the switch closes.
- C) whenever the switch is closed.
- D) always.
- E) when the switch opens.
- F) whenever the switch is open.

g) What is the maximum diode current you expect when the switch is cycled. (Answer 0 if it never conducts.)

h) This circuit design is: (circle one)

- A) incredibly fantastic.
- B) a very good design.
- C) dumb.
- D) not a good design.

Why?
9. (10 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

\[
\begin{align*}
L_1 &= 6\text{ mH} \\
C_1 &= 4\mu\text{F} \\
C_2 &= 6\mu\text{F} \\
L_2 &= 9\text{ mH}
\end{align*}
\]

10. Do you want your grade and scores posted on my door and on the Internet? If your answer is yes, then provide some sort of password or alias: ______________________________

The grades will be posted on my door in alphabetical order under the alias that you provide here. I will not post grades under your real name. The Internet version will be a pdf file which you can download. Both will show the homework, lab, and exam scores of everyone who answers here.

Answers

1. a) 16 V b) 133.3 mA c) 120Ω

2. a) 72.7 mA

3. a) 8 V b) 3 mA

4. a) 937 mA b) 93.7 V c) 46.85 V

d) 87.8 W e) NO $I_{1\text{max}} = 909\text{ mA} > I_1$

5. a) 1 V b) 20 mA c) 13 mA d) 0 e) $I_{D2} = 13\text{ mA} > 0$ f) $I_{D3} = 20\text{ mA} > 0$ g) iii)

6. a) 20.3 V b) 0.98 W c) 9.86 W d) Q_2 will burn out. e) 93.5 f) B g) 4.9 A

h) C D There are good ways to do this same thing without the extra requirement of V_2, and this extra voltage makes the transistor Q_2 more vulnerable to failure (see part d)).

9. 411 Hz