1. (20 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided.

You must show and use the method from the class notes to get the Bode plot. That is, show things like the corner frequency(ies), the approximations of the transfer function in each frequency region, calculations of dB, etc..

\[
H(f) = \frac{30 \cdot \frac{j \cdot f}{15 \cdot Hz} + 2 \cdot \frac{20 \cdot Hz + j \cdot f}{1000}}{4 \cdot j \cdot f}
\]

b) The asymptotic Bode plot is not exact. Using a dotted line, sketch the actual magnitude of the transfer function \(|H(f)|\) on the plot above. Indicate the point(s) where the difference between the two lines is the biggest (draw arrow(s)) and write down the actual magnitude(s) at that (those) point(s).
2. (20 pts) a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.

\[H(s) = \frac{X_{\text{out}(s)}}{X_{\text{in}(s)}} = ? \]

Simplify your expression for \(H(s) \) so that the denominator is a simple polynomial.

Be clear about your signs, so I can tell you know what you're doing.

b) Find the value of \(K \) to make the transfer function of the major loop critically damped.

c) Does the transfer function have a zero? Answer "no" or find the \(s \) value(s) of the zero(s).

d) Does the transfer function have a pole that doesn't depend on \(K \)? Answer "no" or find the \(s \) value(s) of the zero(s).

Answers

\[
\begin{align*}
2. & \quad \text{a) } \frac{3}{s} \left(\frac{10-K}{s^2 + 80s + 1200 + 200K} \right) \\
& \quad \text{b) } 2, -20, 0 \\
3. & \quad \text{a) } 200\text{-mA} \quad 12\text{-V} \\
& \quad \text{b) } 225\text{-mA} \quad 0 \text{ V/ sec} \\
& \quad \text{c) } 9\text{-V} \quad 3750\text{-V/ sec} \\
4. & \quad \text{a) } 20\text{-mA} \quad 6\text{-mA} \quad 1\text{-V} \quad 17\text{-mA} \quad 43\text{-mA} \\
& \quad \text{b) yes } I_{D1} = 43\text{-mA} > 0 \quad \text{c) no } V_{D2} = 1.08V > 0.7V \\
& \quad \text{d) yes } I_{D3} = 6\text{-mA} > 0 \quad \text{e) yes } I_{D4} = 17\text{-mA} > 0 \\
& \quad \text{f) iii) } I_{R2} \text{ and } I_{R4} \text{ will stay the same} \\
& \quad I_{R3} \text{ will increase, so } I_{D3} \text{ will decrease and } I_{D4} \text{ will increase}
\end{align*}
\]
3. (30 pts) The switch has been open for a long time and is closed (as shown) at time \(t = 0 \).

SHOW YOUR WORK, no credit for guesses!

a) What are the final conditions of \(i_L \) and the \(v_C \)?

\[i_L(\infty) = ? \quad v_C(\infty) = ? \]

\[V_S = 36 \text{ V} \]

\[R_1 = 120 \Omega \]

\[R_2 = 240 \Omega \]

\[C = 30 \mu F \]

\[R_3 = 40 \Omega \]

b) Find the initial condition and initial slope of \(i_L \) that you would need to have in order to find all the constants in \(i_L(t) \). Don't find \(i_L(t) \) or it's constants, just the initial conditions.

c) Find the initial condition and initial slope of \(v_C \) that you would need to have in order to find all the constants in \(v_C(t) \). Don't find \(v_C(t) \) or it's constants, just the initial conditions.
4. (30 pts) Assume that diodes D_1, D_3 and D_4 DO conduct. Assume that diode D_2 does NOT conduct.

a) Stick with these assumptions even if your answers come out absurd. Find the following and anything else you need in order to check the assumptions:

\[I_{R3} \quad I_{D3} \quad V_{D2} \quad I_{D4} \quad I_{D1} \]

b) Based on the numbers above, was the assumption about D_1 correct? yes no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)

c) Was the assumption about D_2 correct? yes no

How do you know? (Show a value & range.)

d) Was the assumption about D_3 correct? yes no

How do you know? (Show a value & range.)

e) Was the assumption about D_4 correct? yes no

How do you know? (Show a value & range.)

f) Based on your answers to parts b), c), d) & e), Circle one:

i) The real $I_{D4} < I_{D4}$ calculated in part a.

ii) The real $I_{D4} = I_{D4}$ calculated in part a.

iii) The real $I_{D4} > I_{D4}$ calculated in part a.

(circle one)