ECE 2210/00 Exam 2 given: Fall 20

1. (33 pts) The switch has been open for a long time and is closed (as shown) at time $t=0$.
a) Find the complete expression for $i_{L}(t)$.
(Some space between problems has been removed.)

b) Find i_{L} at time $\mathrm{t}=1.2 \tau . \quad \mathrm{i}_{\mathrm{L}}(1.2 \cdot \tau)=$?
c) At time $t=1.2 \tau$ the switch is opened again. Find the complete expression for $i_{L}\left(t^{\prime}\right)$, where t^{\prime} starts at $t=1.2 \tau$. Be sure to clearly show the time constant.

ECE 2210/00 Exam 2 Fall 20 p2

Problems are out-of-order
3. (30 pts) For partial credit, you must show work and/or intermediate results. a) Find \mathbf{Z}_{1}

b) Find $\mathbf{V}_{\mathbf{S}}$
c) Find $\mathbf{I}_{\mathbf{1}}$ in polar form.

Answers 1. a) $100 \cdot \mathrm{~mA}-75 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{60 \cdot \mu \mathrm{~s}}}$
b) $77.4 \cdot \mathrm{~mA}$
c) $25 \cdot \mathrm{~mA}+52.4 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}^{\prime}}{30 \cdot \mu \mathrm{~s}}}$
2. $1300 \Omega /-67.38^{\circ}$
3. а) $184.8-279.9 \cdot \mathrm{j} \Omega=335.4 \underline{/-56.6^{\circ}} \Omega$
b) $3.864-1.035 \cdot \mathrm{j} \mathrm{V}=4 \mathrm{~V} \underline{-15^{\circ}} \mathrm{V}$
c) $106.6 /-22.25^{\circ} \mathrm{mA}$

2. (20 pts) \mathbf{Z}_{eq} is the total impedance between the two terminals.

Find \mathbf{Z}_{eq} in simple polar form (give me numbers).
For partial credit, you must show work and/or intermediate results.
$\mathrm{f}:=3183.1 \cdot \mathrm{~Hz}$

4. (17 pts) The graph below shows the current through a $20 \mu \mathrm{~F}$ capacitor. Make an accurate drawing of the capacitor voltage. Make reasonable assumptions where necessary. $\mathrm{v}_{\mathrm{c}}(0)=0$. Label your graph (numbers). Note: You will be graded on the accuracy of your plot at $0,2,5$, and 6 ms , so calculate those values and plot them carefully. Between those points your plot must simply be the correct shape.
You MUST SHOW how you calculate your values starting from the original relationships between voltage and current.
That is: Start with the interger and/or differential equations for the capacitor! capacitor current (A)

