Circle answers, show units, and round off reasonably

1. (24 pts) The ammeter, A, reads 20 mA . Remember that ideal ammeters have no resistance.
a) The power dissipated by R_{2} is 0.18 W , what is the value of R_{2} ?

b) The source provides 0.6 W of power.

What is the value of V_{S} ?
c) What is the value of R_{1} ?
2. (24 pts) Use the method of superposition to find the voltage across $\mathrm{R}_{3}\left(\mathrm{~V}_{\mathrm{R} 3}\right)$ and the current through $\mathrm{R}_{2}\left(\mathrm{I}_{\mathrm{R} 2}\right)$. Be sure to clearly show and circle your intermediate results.

ECE 2210/00 Exam 1 Spring 18 p2

3. (26 pts) a) Find and draw the Thévenin equivalent of the circuit shown.
The load resistor is R_{L}.

b) Find and draw the Norton equivalent of the same circuit.
c) Find the Voltage across the load using your Thévenin equivalent circuit. $V_{R L}=$?
d) Select a load resistor to maximize the power delivered to the load and find that maximum power. $\mathrm{P}_{\text {RLmax }}=$?
4. (26 pts) a) Use nodal analysis to find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

Answers

1. a) $50 \cdot \Omega$
b) $10 \cdot \mathrm{~V}$
c) $86.7 \cdot \Omega$
2. a)

b)
$28.8 \cdot \mathrm{~mA}$

c) $1.2 \cdot \mathrm{~V}$
d) $51.8 \cdot \mathrm{~mW}$

Folder Number \qquad
2. $-1 \cdot \mathrm{~mA} \quad 7.8 \cdot \mathrm{~V}$
4. a) $4 \cdot V$
b) $10 \cdot \mathrm{~mA}$

