ECE 2210/00 Exam 1 given: Spring 17 (The space between problems has been removed.)

Closed Book, Closed notes, Calculators OK, Show all work to receive credit

Circle answers, show units, and round off reasonably

To get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

1. (25 pts) In the circuit shown find the resistor values of $R_{1} \& R_{4}$,
$\mathrm{R}_{1}=$? the power dissipated by $\mathrm{R}_{2}\left(\mathrm{P}_{\mathrm{R} 2}\right)$, and the source voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$.

Note: feel free to show answers \& work right on the schematic.
a) $\mathrm{R}_{1}=$?
b) $\mathrm{R}_{4}=$?
c) $\mathrm{P}_{\mathrm{R} 2}=$?
d) $\mathrm{V}_{\mathrm{S}}=$?

2. (27 pts) Use the method of superposition to find $I_{R 2}$ and $V_{R 1}$. Be sure to clearly show and circle your intermediate results.

ECE 2210/00 Exam 1 Spring 17 p2

3. (24 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.

b) Find the load current using your Thévenin equivalent circuit.
c) Choose a different value of R_{L} so as to maximize the power dissipated in R_{L}. Find that maximum power $\left(\mathrm{P}_{\mathrm{RL}}\right)$.
4. (24 pts) a) Use nodal analysis to find the voltage across $\mathrm{R}_{1}\left(\mathrm{~V}_{\mathrm{R} 1}\right)$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

b) Find the current through $\mathrm{R}_{4}\left(\mathrm{I}_{\mathrm{R} 4}\right) . \quad \mathrm{I}_{\mathrm{R} 4}=$?

Answers

Folder Number \qquad

1. a) $500 \cdot \Omega$
b) $170.3 \cdot \Omega$
c) $37.5 \cdot \mathrm{~mW}$
d) $8 \cdot \mathrm{~V}$
2. $-1.2 \cdot \mathrm{~mA}$
19.2•V
3. a)

b) $15 \cdot \mathrm{~mA}$
c) $200 \cdot \Omega$ $25.3 \cdot \mathrm{~mW}$
