Closed Book, Closed notes, Calculators OK, Show all work to receive credit

Circle answers, show units, and round off reasonably

1. (25 pts) Find the values below. Show your work, which may appear right on the schematic.
a) $\mathrm{R}_{2}=$?
b) $\mathrm{R}_{1}=$?
c) $\mathrm{P}_{\mathrm{S}}=$?

2. (25 pts) a) Use the method of superposition to find $\mathrm{I}_{\mathrm{R} 2}$ and $\mathrm{V}_{\mathrm{R} 1}$. Be sure to clearly show and circle your intermediate results.

$$
\mathrm{I}_{\mathrm{R} 2}=? \quad \mathrm{~V}_{\mathrm{R} 1}=?
$$

3. (25 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.
b) Find and draw the Norton equivalent of the same circuit.
c) Find the load current using your Thévenin equivalent circuit.
d) Choose a different value of R_{L} so as to maximize the power dissipated in R_{L}. Find that maximum power, P_{L}.

4. (25 pts) Use nodal analysis to find $\mathrm{V}_{\mathrm{R} 1}$ and $\mathrm{I}_{\mathrm{R} 3}$. You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

Folder Number

Answers

1. a) $1 \cdot \mathrm{k} \Omega$
b) $750 \cdot \Omega$
c) $495 \cdot \mathrm{~mW}$
2. $1.2 \cdot \mathrm{~mA}-2.4 \cdot \mathrm{~mA}=-1.2 \cdot \mathrm{~mA}$
$-10.8 \cdot \mathrm{~V}-14.4 \cdot \mathrm{~V}=-25.2 \cdot \mathrm{~V}$
3. a) $16 \cdot \mathrm{~V}{ }^{+} 70 \cdot 0$

c) $94.1 \cdot \mathrm{~mA}$
d) $914 \cdot \mathrm{~mW}$
4. $7 \cdot \mathrm{~V}$
$1 \cdot \mathrm{~mA}$
