EE1050/60
 Exam 1
 given: Fall 02
 (The space between problems has been removed.)

Remember, to get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

Note: feel free to show answers \& work right on the schematic

1. (10 pts) Find the equivalent resistance of this network, i.e. what would an ohmmeter read if hooked to the terminals a and b.
2. (5 pts) A 37 V source is hooked to the terminals a and b above.

Use the voltage divider concept to find the voltage across resistor R_{2}.
$\mathrm{R}_{1}:=240 \cdot \Omega$

3. (20 pts) In the circuit shown find the voltage source $\left(\mathrm{V}_{\mathrm{S}}\right)$, the power input by the source $\left(\mathrm{P}_{\mathrm{S}}\right)$, and the resistor values; R_{1} and R_{3}.

4. (15 pts) a) Use the method of superposition to find the current through R_{2}. Be sure to clearly show and circle your intermediate results.

5. (16 pts) Nodal analysis. Assume that you know the values of all the resistors and sources and you want to find the circuit voltages.
a) Select a ground (reference) node and label it on the schematic (draw ground symbol).
b) Label other nodes and currents as necessary to perform nodal analysis.
c) How many simultaneous equations will you need to perform this analysis?
d) Write all the necessary equations in terms of the resistors, the sources, and the unknown nodes. Just write and circle the equations, do not try to simplify or solve them.

EE1050/60 Exam 1 Fall 02 p2

6. (18 pts) For the waveform shown, find:
a) peak-to-peak current, $I_{p p}$
b) amplitude, A
c) period, T
d) frequency f in cycles/sec or Hz
e) frequency ω in radians $/ \mathrm{sec}$
f) the phase angle in degrees

Current, I

g) a complete expression for $v(t)$, include numbers and units
7. (16 pts) A NiCad Battery pack is used to power a cell phone. When the phone is switched on the battery pack voltage drops from 4.80 V to 4.65 V and the cell phone draws 50 mA .
a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.
b) The cell phone is used to make a call. Now it draws 300 mA . What is the battery pack voltage now?
c) The battery pack is placed in a charger. The charger supplies 5.10 V . How much current flows into the battery pack?

Answers

1. 296Ω
2. 12 V
3. $7.6 \mathrm{~V}, 684 \mathrm{~mW}, 10 \Omega, 100 \Omega$
4. $4 \mathrm{~mA}-5 \mathrm{~mA}=-1 \mathrm{~mA}$
5. a) \& b)

c) 2
d) $\mathrm{I}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{a}}-0}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}$
$\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{2}}+\frac{\mathrm{V}_{\mathrm{S}^{-}} \mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{3}}=\frac{\mathrm{V}_{\mathrm{b}^{-0}}}{\mathrm{R}_{4}}$

6.

a) 12 mA
b) 6 mA
c) 24 ms
d) 41.7 Hz
e) $262 \mathrm{rad} / \mathrm{s}$ f) -90°
g) $\quad 6 \cdot \mathrm{~mA} \cdot \cos \left(262 \cdot \frac{\mathrm{rad}}{\sec } \cdot \mathrm{t}-90 \cdot \mathrm{deg}\right)+2 \cdot \mathrm{~mA}$

b) 3.9 V
c) 100 mA

E1050/60 Exam 1 Fall 02 p2

EE 1050/60 Midterm \#1 Arn Stolp
Name
Scores:
Page 1-3 \qquad of a possible 35 pts

Page 4\&5 \qquad of a possible 31 pts

Page 6\&7 \qquad of a possible 34 pts

Total \qquad of a possible 100 pts

