EE1050/60 Exam 1 given: Fall 02

Remember, to get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like I_{B1}) or a guessed value and proceed.

Note: feel free to show answers & work right on the schematic

- 1. (10 pts) Find the equivalent resistance of this network, i.e. what would an ohmmeter read if hooked to the terminals a and b.
- 2. (5 pts) A 37V source is hooked to the terminals a and b above. Use the voltage divider concept to find the voltage across resistor R₂.
- 3. (20 pts) In the circuit shown find the voltage source (V_S), the power input by the source (P_S), and the

4. (15 pts) a) Use the method of superposition to find the current through R2. Be sure to clearly show and circle your intermediate results.

resistor values; R_1 and R_3 . $I_2 := 90 \cdot mA$ $P_{R1} := 81 \cdot mW$

- 5. (16 pts) Nodal analysis. Assume that you know the values of all the resistors and sources and you want to find the circuit voltages.
 - a) Select a ground (reference) node and label it on the schematic (draw ground symbol).
 - b) Label other nodes and currents as necessary to perform nodal analysis.
 - c) How many simultaneous equations will you need to perform this analysis?
 - d) Write all the necessary equations in terms of the resistors, the sources, and the unknown nodes. Just write and circle the equations, do not try to simplify or solve them.

 $R_1 = 240 \cdot \Omega$ $R_2 := 160 \cdot \Omega$ $R_3 = 300 \cdot \Omega$ $R_4 = 380 \cdot \Omega$ b 0 $R_5 = 220 \cdot \Omega$

(The space between problems has been removed.)

EE1050/60 Exam 1 Fall 02 p2

- Current, I 6. (18 pts) For the waveform shown, find: 10 a) peak-to-peak current, I pp mΑ 8 b) amplitude, A 6 4 c) period, T d) frequency f in cycles/sec or Hz t ±₆ 14 0 2 6 8 10 12 16 18 20 24 4 ٤4 e) frequency ω in radians/sec (ms) f) the phase angle in degrees
 - g) a complete expression for v(t), include numbers and units
- 7. (16 pts) A NiCad Battery pack is used to power a cell phone. When the phone is switched on the battery pack voltage drops from 4.80 V to 4.65 V and the cell phone draws 50 mA.

a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.

b) The cell phone is used to make a call. Now it draws 300 mA. What is the battery pack voltage now?

c) The battery pack is placed in a charger. The charger supplies 5.10 V. How much current flows into the battery pack?

Answers

1. 296Ω	2. 12V	3. 7.6V, 684mW	, 10Ω,	100Ω	4. 4mA - 5m/	A = -1mA
5. a) & b)		$\begin{array}{c} a & \frac{l_2}{R_2} & b \\ R_2 & R_3 \\ R_3 \\ \hline \\ V & V_5 \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$	³ R ₄	c) 2	d) I _S = $\frac{V_a - V_a}{R_2}$	$= \frac{V_{a}-0}{R_{1}} + \frac{V_{a}-V_{b}}{R_{2}}$ $\frac{V_{b}}{2} + \frac{V_{S}-V_{b}}{R_{3}} = \frac{V_{b}-0}{R_{4}}$
6. a) 12mA b) 6mA c) 24ms d) 41.7Hz						
e) 262 rad/s f) -90°						
g) 6∙m	$hA \cdot \cos\left(262 \cdot \frac{r_0}{s}\right)$	$\left(\frac{\mathrm{ad}}{\mathrm{ec}}\cdot\mathbf{t}-90\cdot\mathrm{deg}\right)+2\cdot\mathrm{mA}$				
7. a)	$-\infty$ R s = 3·Ω				EE 1050 / 6	60 Midterm #1 Arn Stolp
2					Name	
	$V_{c} = 4.80$	V			Scores:	
 	5				Page 1 - 3	3 of a possible 35 pts
	_0				Page 4&5	5 of a possible 31 pts
b) 3.9V	c) 100m/	A			Page 6&7	7 of a possible 34 pts
EE1050/60	Evam 1 Ea	all 02 n2			Total	of a possible 100 pts

E1050/60 Exam 1 Fail 02 p2