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Circuit Transients
1.1 Introduction
Transient: A transient is a transition from one state to another.  If the voltages and currents in a circuit do not 
change with time, we call that a "steady state".  In fact, as long as the voltages and currents are steady AC 
sinusoidal values, we can call that a steady state as well.  Up until now we've only discussed circuits in a single 
steady state  But what happens when the state of a circuit changes, say from "off" to "on"?  Can the state of the 
circuit change instantaneously?  No, nothing ever changes instantaneously,  the circuit state will go through some 
transition from the initial state, "off" to the final state, "on" and that change will take some amount of time.  The 
same is true in mechanical systems.  If you want to change the velocity of a mass or the level of fluid in a tank or 
the temperature of your coffee, that transition from one state to another will take some time.
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The drawings on this page show some typical transients that can occur when a circuit is first turned on.  The 
initial state of all the waveforms is 0.  The final state is either 1 or a sine wave with an amplitude of 1.  Notice 
that in all four cases the transient effects decay exponentially and that all four waveforms have pretty nearly 
reached their steady-state values by the end of the graph.
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Transient analysis:  Needless to say, the analysis of these transients is a bit more involved than the steady 
state.  In fact, it usually involves two steady state analyses just to find the initial and final states of the circuit, 
and then you still need to figure out what happens in between.

Transients are not instant because capacitors and inductors in the circuit store energy, and moving the energy 
into or out of these parts takes some time.  The voltage-current relationships of capacitors and inductors are 
differential equations, so transient analysis will involve solving differential equations.  But don't panic, you'll 
learn some nice tricks and techniques for dealing with these equations— tricks and techniques that you can 
use in any engineering field, not just EE.  Actually, all that phasor stuff you used with AC circuits was also a 
trick to simplify the differential equations, unfortunately, that trick only works for sinusoids in steady state.

DC circuits with only resistors also experience transients, but these are due to non-ideal capacitance and 
inductance of the parts and wires that we haven't considered before.  These transients happen so fast that we 
won't worry about them.
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Printer Design
Lets think about some of the transients and signals
involved with moving a print head and putting ink on a
page of paper.  

First, there’s the mechanical system to move the print
head.  How quickly does the movement respond to an
electrical signal sent to the motor? How powerful do those
signals have to be?  Does it have a natural frequency
where it might vibrate of oscillate?  These are all questions
for the transient analysis of the mechanical system.  

The electrical circuit would take a signal from some sensor
that indicates the position of the print head and, using
other information about where the next character should be
printed, send the right signals to the motor.  You’d use
transient analysis to make sure that it could handle any
combination of inputs without overshooting the position or
oscillating or going too slowly.  Besides this, the electrical
system may have to compensate for properties of the
mechanical system.

Finally, there’s the system that actually puts the ink on the
paper, let’s say it’s an ink jet.  Transient considerations
here would include the time it takes for the print head to
heat the ink to the point where it spits a bubble and how
that should all be timed with the head movement to place
that bubble on the paper at just the right place.
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Importance: So why are transients important?  
Two reasons really.   DC and steady-state AC are 
fine for moving and using electrical power, but 
sometimes you need to turn them on and off and 
you may need to know what happens at those 
times.  That need turns out to be relatively rare and 
probably couldn't justify the time we'll spend 
studying transients.  It's signals processing and 
control systems really drive our study of transients.

Signals are electrical voltages and currents that 
carry information.  The information could be audio or 
video or the information might be about the position 
or speed of mechanical parts, or about the 
temperature or level of fluids or chemicals or 
practically anything you can imagine.  To carry 
information signals have to change in some way 
that we can't predict and we'll need to have some 
idea how a circuit will respond to those changes.  
Changes are transients.  However, since these 
changes can't be known beforehand we usually find 
a circuit's response to specific types of inputs and 
then draw conclusions about the effectiveness or 
stability in the general case.  Often the electrical 
circuit is just one part of a larger system that may  
include mechanical, hydraulic, or thermal systems.  
See box.

1.2 First-order transients

Analysis of a circuit with only one capacitor or one inductor results in a first-order differential equation and 
the transients are called first-order transients.

Series RC circuit, traditional way:  Look at the circuit at right.  It shows a 
capacitor and a resistor connected to a voltage source by way of a switch 
that is closed at time t=0.  Before the switch is closed the current i(t) and the 
voltage vR are both 0, but the voltage vC is unknown.  Remember a capacitor 
is capable of storing a charge, so we don't know what its charge might be 
unless we or can measure it or its is given.  I'll call it the initial voltage (vC(0)). 
Because the voltage across a capacitor cannot change instantaneously, the 
voltage across the capacitor just after the switch closes must be the same 
as it was just before the switch closes.

Now we just have to apply the basic circuit laws

V in= v R v C
.i R v C = .i R .1

C
d

∞

t
ti C Making the obvious substitution.

The next step here would be to differential both sides of the equation, but if you're a little more clever, there's 
an easier way, check this out: 

Make this substitution instead i = i C = .C d

dt
v C , to get V in= ..R C d

dt
v C v C

Waa-laa, no integration.  Always try to write your differential equations without integrals, it will eliminate 
one more source of mistakes.  We now have a differential equation in terms of vC.  If vC isn't the variable we 
want to find in our analysis then we can always go back to the circuit later and find the current or the 
voltage vR by simple circuit analysis after we've found vC.
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So now we have to solve the differential equation.  Recall from your differential equations class the that first 
order differential equations are always solved by equations of the following form.

Standard first order differential equation answer: v C( )t = A .B e
.s t

And, by differentiation: d

dt
v C = ..B s e

.s t

Substitute these back into the original equation:

V in= ..R C d

dt
v C v C = ....R C B s e

.s t A .B e
.s t = ....R C B s e

.s t .B e
.s t A

We can separate this equation into two parts, one which is time dependent and one which is not.  Each 
part must still be an equation.

Time independent (forced) part: V in= A , A = V in= final condition = v C( )∞

Time dependent (transient) part: 0 = ....R C B s e
.s t .B e

.s t ,

Divide both sides by .B e
.s t to get 0 = ..R C s 1 , s =

1
.R C

=
1

τ
, where τ = .R C

This τ is called the "time constant" and will become a rather important little character.

Put the parts we know back into the expression for v C( )t = V in
.B e

t
.R C = v C( )∞ .B e

t
.R C

at time t = 0: v C( )0 = V in B , B = v C( )0 V in = v C( )0 v C( )∞ B is the difference between vC 
at the start and vC at the end.

And finally: v C( )t = V in
.B e

t
.R C = v C( )∞ .v C( )0 v C( )∞ e

t
.R C

It turns out that all first-order transient solutions will have the same form, just different variables and time constants. 

Once you have vC(t), you can also find vR(t) and/or i(t) from vC(t) if you want.

v R( )t = V in v C( )t = V in
.B e

t
.R C V in = .B e

t
.R C = .B e

t

τ = .v C( )0 v C( )∞ e

t
.R C

i( )t = .C d

dt
v C = ...C B

1
.R C

e

t
.R C = .B

R
e

t

τ = .
v C( )0 v C( )∞

R
e

t
.R C

V in
Let's plot these and see what they 
actually look like.  These graphs 
show the capacitor charging from 
it's initial value to Vin and vR falling 
to 0 (same for iR) 

vC(t)

63%

37%

The curves are generalized 
based on the concept of the 
time constant, which is why we 
introduced th time constant.  
Later we'll look at these kind of 
curves in greater detail.

v C( )0 time

0 1 2 3 4 5

0 t=1τ t=2τ t=3τ t=4τ t=5τ
V in v C( )0 time constants

63%
Ok, that was fun, but you might 
ask at this point if there isn't an 
easier way.  Yes, in fact, there 
is.  We'll look at next.

37%

vR(t) = i(t)R
time constants

0
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First-Order Transients the Easy Way  

Notice in the preceeding analysis that I made a very standard guess at the solution of the differential equation. 

Standard first order differential equation answer: v C( )t = A .B e
.s t

Further notice that A turned out to be the final condition and that B turned out to be the difference between the 
initial and final conditions.  Finally, remember that I renamed s to -1/τ.  All of this can be generalized to any 
first order system.  The answer will always be in this form:   final condition

/                        \
---  time constant

For all first order transients: x( )t = x( )∞ .( )x( )0 x( )∞ e

t

τ

\
 initial condition

x(t) could be any variable in any first-order system.  It could be a temperature, or a fluid level, or a velocity, but 
for us it usually means voltages and currents, so we'll have solutions like these.

v X( )t = v X( )∞ .v X( )0 v X( )∞ e

t

τ or i X( )t = i X( )∞ .i X( )0 i X( )∞ e

t

τ

You find Initial and final conditions from steady-state analysis.  That leaves only one thing that you have to find 
from the differential equation-- the time constant.  If we could only figure out what the time constant of a circuit 
(or system) is, then we could almost jump straight to the solution. 

The first way to find the time constant is to simply remember it's form for a few cases, like the for RC circuit.  
Even if the circuit doesn't look exactly like the standard RC series circuit, Thevenin can help us make it look 
that way.  Since nearly all of our first order circuits will involve a single capacitor or a single inductor this is not 
an impractical method at all.

Another way to find the time constant is to manipulate the differential equation into this particular form

constant = X .τ dX

dt
with no factor in front of the "X" term.  Whatever the factor in front of

dX

dt

turns out to be, that will be τ.  For the RC circuit the differential equation could be written as

V in = ..R C d

dt
v C v C notice that the factor in front of d

dt
v C is indeed τ.

Finally, there is an even easier way based on the LaPlace "s" and s-impedances that we can use in circuits 
and equations in place of differentials and integrals.  You'll see this last method later, after second-order 
transients.  (Incidentally, this is the reason that I chose to use an s as the unknown in the exponential.)

Series RL circuit:  OK, if it's so easy, let's try it with a series RL circuit.

v in = v R v L V in = .i R .L d

dt
i

V in

R
= i .L

R

d

dt
i

So, the time constant must be τ =
L

R
That wasn't too bad.

Initial condition: i L( )0 = 0 If the switch was initially open the the current just 

before the switch was closed was 0, and inductor current can't change instantly. 

Final condition: i L( )∞ =
V in

R
The inductor looks like an short for steady-state DC.

So: i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ =
V in

R
.0

V in

R
e

.R

L
t

= .
V in

R
1 e

.R

L
t

Well, that's wasn't too painfull, was it?
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1.3 Initial and Final Conditions
More than once I've said that the initial and final conditions are found from steady-state analysis of the 
circuit.  It's about time I said how.

Initial Conditions: There are two very important concepts that you use to find the initial conditions.

1) Capacitor voltage cannot change instantaneously,  vC(0+) = vC(0-).
If you can find the capacitor voltage just before time t = 0 (or whatever starts the transient), then you 
know what it is just after time t = 0,  vC(0+) = vC(0-).  It cannot change instantaneously.  Often you'll 
use the methods outlined below to find the final condition of the previous circuit, especially if the 
circuit's been in that condition for "a long time".  Sometimes you'll have to solve the previous 
transient to find the initial condition for the next transient.

If you cannot find the capacitor voltage just before time t = 0 from the circuit, then you'll have to be 
told what the initial voltage or charge is.  Capacitors can hold a charge for a long time, and can be 
moved from one circuit to another without losing the charge.  High school electronics students like to 
charge capacitors and leave them where they'll shock some poor unsuspecting soul.  Of course you'd 
never do something as childish as that.  Occasionally you may be told what the initial charge is in 
terms of coulombs.  In that case remember the definition of capacitance.  

C =
Q

V
which can be rearranged to V =

Q

C

If you have nothing else to go on, assume the initial voltage is 0.

2) Inductor current cannot change instantaneously,  iL(0+) = iL(0-).
If you can find the inductor current just before time t = 0 (or whatever starts the transient), then you 
know what it is just after time t = 0,  iL(0+) = iL(0-).  It cannot change instantaneously.

If you cannot find the inductor current just before time t = 0 from the circuit, then assume it's 0.  Real 
circuits and real inductors always have some resistance so inductor currents just don't last very long 
(unless you're dealing with superconductors).  Inductors would be very difficult to move from one 
circuit to another without losing the current.  If you're given an initial current for a problem, realize that 
this is probably just to make the problem more interesting, or the initial current comes from previous 
analysis.

Do not mix these two concepts up.  Capacitor current and inductor voltage can both change instantly 
with no problem at all.

Final Conditions:  This is steady-state analysis.  The steady-state is the final condition.
DC sources

If all the voltage and current sources are DC, then at the final condition the capacitors are all done done 
charging so iC = 0, and you can treat them as open circuits.  When you find the voltage across the open, 
that will be the final capacitor voltage.  You've done this sort of thing before to find the energy stored in a 
capacitor.

Replace capacitors with opens Replace inductors with wires

At the final condition the inductor currents are also no longer changing, so the voltage across an inductor 
is 0.  Treat inductors as wires (short circuits).  When you find the current through the wire, that will be the 
final inductor current.

AC sources
Use phasor analysis (jω).  Remember that phasor analysis was also called "steady-state AC".  One of the 
primary assumptions was that the transients had all died out.

1
..j ω C

..j ω L
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1.4 Exponential Curves

Before we go on to second-order transients we should take a closer look at some of the characteristics of 
exponential curves.  The curves that show up as answers to our transient problems are shown below.  The 
transient effects always die out after some time, so the exponents are always negative.  Just think about what 
a positive exponent would mean.  That wouldn't be a transient-- that would be exponential growth, like the 
population.

0 1 2 3 4 5

Final
condition

95%
99%

1 e

t

τ

63%

0%
Initial
condition

time

time constants, τ
Rising Exponential Curve

0 1 2 3 4 5

Initial
condition 100%

37%

e

t

τ

5%
1%

Final
condition

time constants, τ
Decaying Exponential Curve

Some important features:
1) These curves proceed from an initial condition to a final condition.  If the final condition is greater than 
the initial, then the curve is said to be a "rising" exponential.  If the final condition is less than the initial, 
then the curve is called a "decaying" exponential.  

2) The curves' initial slope is + 1/τ.  Ιf they continued at this initial slope they'd be done in one time constant. 

3) In the first time constant the curve goes 63% from initial to the final condition.

4) After three time constants the curve is 95% of the way to the final condition.

5) By five time constants the curve is within 1% of the final condition and is usually considered finished.  
Mathematically, the curve approaches the final condition asymptotically and never reaches it.  In reality, of 
course, this is nonsense.  Whatever difference there may be between the mathematical solution and the 
final condition will soon be overshadowed by random fluctuations (called noise) in the real circuit.

Transients  p. 1.6



A.Stolp
rev 12/19/15ECE 2210    First-Order Transient Examples

1/30/20

Ex1 a) Find the expression for vc(t) if the switch is closed at time t = 0 
R .600 Ω

and vc(0) = 0 .
t = 0

V in
.9 V

v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ
C .0.1 µF

τ .R C =τ 60 µs
redraw to 
find vc(∞) .0 mA

.9 V v C( )∞ = .9 V
v C( )t = .9 V .( ).0 V .9 V e

t
.60 µs

0 0.1 0.2 0.3 0.4
0

5

10
.9 V

v C( )t
b) What is the voltage across the capacitor, C, at t = 0.1ms ? .7.3 V

(V)

v C( ).25 µs = =.9 V ..9 V e

.100µs
.60 µs 7.3 V

time (ms)

c) When will the current through the resistor be i R
.5 mA?

i R( )∞ = .0 mA i R( )0 = =
.9 V

R
15 mA found from drawing

capacitor 
voltage can't 
change instantly

redraw at 
t = 0+ to 
find iR(0)

.9 V

i R( )t = i R( )∞ .i R( )0 i R( )∞ e

t

τ .9 V .0 V

= .0 mA .( ).15 mA .0 mA e

t

τ

0 0.1 0.2 0.3 0.4
0

5

10

15

= ..10.976mA e

t
.60 µs = .5 mA at some time, t i R( )t

Solve for t = =.τ ln
.5 mA
.15 mA

65.92 µs (mA)

time (ms)
d) When will the current through the resistor be i R

.20 mA ? .66

Since the initial condition is about 15mA and 
the final condition is 0mA, iR will never be 20mA.

Ex2 A 1000 µF capacitor has an initial charge of 12 volts.   A 20-Ω resistor is connected across the capacitor at 
time t = 0.  Find the energy dissipated by the resistor in the first 5 time constants.

After 5 time constants nearly all of the energy initially stored in the capacitor will be dissipated by the 
resistor.

C .1000µF V C
.12 V W C

..1

2
C V C

2 =W C 0.072 joule

You can get to this answer just by knowing a little about the exponential curve, but what if you want a more 
accurate answer?  Then you'll have to find the remaining voltage across the capacitor at t = 5t and subtract 
the energy left in the capacitor at that time.

v C( )0 = .12 V v C( )∞ = .0 V v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ = .0 V .( ).12 V .0 V e

t

τ= ..12 V e

t

τ

at t = 5τ: v C( ).5 τ = =..12 V e 5 81 mV =..1

2
C ( ).81 mV 2 3.28110 6 joule

Not surprisingly, this makes no significant difference: W R = =W C
..1

2
C ( ).81 mV 2 0.072 joule
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Ex3 The capacitor is initially uncharged.  The switch is in the upper 
position from 0 to 2ms and is switched down at time t = 2ms.

R 2
.2 kΩ

t = 0
R 1

.220 Ω
R 3

.480 Ω t = 2ms
a) What is the capacitor voltage, vC(t) 

First interval v C( )0 = .0 V V 1
.24 V

C .0.4 µF
V 2

.10 V

R 2 R 3
.480 Ω

R 1
v C( )∞ = .24 V

R Th R 1 R 2 R 3
τ .R Th C

R 3 =τ 1.08 ms

v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ = .24 V .( ).0 V .24 V e

t
.1.08ms

at 2ms: =.24 V ..24 V e

.2 ms
.1.08ms 20.23 V

Second interval, define a new time, t' = t - 2ms 

R 2 R 2t = 2ms :
t' = 0

v C( )0 = .20.23V
v C( )∞ = .10 V R Tht' = 0

t' = ∞ τ' .R 2 R 3 C

R 3 R 3 =τ 1.08 ms

v C( )t' = v C( )∞ .v C( )0 v C( )∞ e

t'

τ' = .10 V .( ).20.23V .10 V e

t'
.0.96ms = .10 V ..10.23V e

t .2 ms
.0.96ms

0 1 2 3 4 5 6
0

6

12

18

24

30

0 < t < 2ms V C( )t

V C( )t = .24 V ..24 V e

.2 ms
.1.08ms

.20.23V
t > 2ms

V C( )t = .10 V ..10.23V e

t .2 ms
.0.96ms

.3.57ms

b) When is voltage across the 
capacitor 12V AND getting smaller?

t' = 0 t' = 1ms t' = 3ms

.12 V = .10 V ..10.233V e

t 12
.0.96ms time (ms)

.12 V .10 V
.10.23V

= ln
.12 V .10 V

.10.23V
=

t 12
.0.96ms

t 12= =..0.96ms ln
.12 V .10 V

.10.23V
1.57 ms

e

t 12
.0.96ms

=.2 ms .1.57ms 3.57 ms
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Ex4 a) Find the complete expression for iL(t). L .3 mH
R 1

.20 Ω

Before the switch closes, t = 0- 
t = 0

V in
.15 V R 2

.60 Ω R 3
.15 Ω

iL(0) = 0

Final time, t = ∞  

R 1 R 23
1

1

R 2

1

R 3R 2 R 3

=R 23 12 Ω

R Th
1

1

R 1

1

R 2

R 3

v R3( )∞ = =.
R 23

R 1 R 23
V in 5.625 V

=R Th 30 Ω

R 1 i L( )∞ =
v R3( )∞

R 3
= =

.5.625V

.15 Ω
375 mA

τ L

R Th
R 2 R 3

=τ 100 µs

i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ = .375 mA .( ).0 mA .375 mA e

t
.100µs = .375 mA ..375 mA e

t
.100µs

b) When is the voltage across R2 = 10V?

Before the switch closes, t = 0- From drawing above at t = ∞ 

v R2( )∞ = v R3( )∞ = =.
R 23

R 1 R 23
V in 5.625 V

iL(0) = 0

=
V in

R 1 R 2
187.5 mA v R2( )t = v R2( )∞ .v R2( )0 v R2( )∞ e

t

τ

= .5.625V .( ).11.25V .5.625V e

t
.100µs

v R2( )0 = =.
R 2

R 1 R 2
V in 11.25 V

= .10 V at some time, solving for that time...

t = =.τ ln
.10 V .5.625V

.11.25V .5.625V
25 µs

Alternatively, when vR2(t) = 10V, then vR1(t) = 5V and i L( )t = =
.5 V

R 1

.10 V

R 2
83.333 mA

t = =.τ ln
.83.333mA .375 mA

.375 mA
25 µs

c) What is the vL(t) expression?

v L( )t = v L( )∞ .v L( )0 v L( )∞ e

t

τ
= .0 V .( ).11.25V .0 V e

t
.100µs
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Ex5 The switch has been closed for a long 
time and is opened (as shown) at time t = 0.

a) Find the complete expression for iL(t). 
R 3

.120 Ω

t = 0
R 1

.200 Ω

I S
.180 mA

L .20 mH
R 2

.60 Ω

Before the switch opens, t = 0- 

=R 3 120 Ω

=R 1 200 Ω

=R 2 60 Ω i L( )0 = =.I S

1

R 3

1

R 1

1

R 2

1

R 3

50 mA

Final time, t = ∞  
=R 3 120 Ω

=R 1 200 Ω

i L( )∞ = =.I S

1

R 3

1

R 1

1

R 3

112.5 mA

R 3

R 1

R 2 R Th R 1 R 3 =R Th 320 Ω τ L

R Th
=τ 62.5 µs

i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ = .112.5mA .( ).50 mA .112.5mA e

t
.62.5 µs = .112.5mA ..62.5mA e

t
.62.5µs

b) Find iL at time t = 1.4τ . i L( ).1.4 τ = .112.5mA ..62.5mA e

.1.4 τ
τ = =.112.5mA ..62.5mA e 1.4 97.088 mA

c) At time t = 1.4τ the switch is closed again.  Find the complete expression for iL(t'), where t' starts at t = 1.4τ.
    Be sure to clearly show the time constant.

R 3

R 1
R 2 R Th

1

1

R 1

1

R 2

R 3 =R Th 166.2 Ω

τ L

R Th
=τ 120.4 µs

i L( )0 = .97.1mA from part b)

i L( )∞ = .50 mA initial value from part a)

i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ = .50 mA .( ).97.1mA .50 mA e

t'
.120.4µs = .50 mA ..47.1mA e

t'
.120.4µs
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ECE 2210 / 00    homework  #  10 Due:  Tue, 9/29/20 A.Stolp b.2

1. An FE style problem (A)  1.0 x 10-7 joulesA 10-microfarad capacitor has been charged to a potential of 150 volts.  A 
resistor of 25 Ω is then connected across the capacitor through a switch.  
When the switch has been closed for 10 time constants the total energy 
dissipated by the resistor is most nearly

(B)  1.1 x 10-1 joules

(C)  9.0 x 101 joules

(D)  9.0 x 103 joules

2. a) The switch is closed at time t = 0 and vC(0) = 0V, find vC(t).
R .80 Ω

V in
.12 V C .2 µF

b) What is the value of the voltage across C at t .40 µs

3. In the circuit below, the switch has been in the upper 
position for a long time and is switched down at time t = 0.

4. The switch below has been in the upper position for 
a long time and is switched down at time t = 0.
At what time is vC = 4 V?

What is the capacitor voltage (VC) at t .4 ms
R 1

.1.8 kΩ
R 1

.1 kΩ R 2
.500 Ω

C .2 µF

C .3.2 µF

R 2
.200 Ω

5. a) What is the time constant of this circuit? R 1
.80 Ω R 3

.200 Ω
Hint: Use a Thevenin equivalent circuit.

V S
.6 V R 2

.400 Ω
b) What will be the final value of vC? 

(After the switch has been closed for a long time)
C .22 µF

6. In a circuit with two capacitors, the left capacitor (C1) has an initial 
charge and the right capacitor (C2) does not.  When the switch is 
closed at time t = 0, current i(t) flows, discharging C1 and charging C2.  

i( )t

+ +
a) Derive the differential equation for i(t).  Hint: write an equation in 

terms of i and integrals of i, then differentiate the whole equation.
v C1 v C2C 1 C 2

_ _
Write your DE in this form: Constant = x( )t .τ d

dt
x( )t

R
What is the time constant (τ)?

b) Find i(t) given C 1
.24 µF C 2

.12 µF R .400 Ω v C1( )0 = .18 V v C2( )0 = .0 V

c) Find vC2(t) for the same values.  Hint:  The trick here will be finding the final condition.  Realize that charge will 
be conserved.  If C1 discharges x coulombs, then C2 will charge x coulombs.  Charges will stop flowing when 
vC1 = vC2.  It may help to think of two water tanks, one with half the cross-sectional area of the other. V =

Q

C
d) Find the initial and final stored energy of the system (WC1 + WC2) to find the total "loss".  What happened 

to that energy? τ = .R
1

1

C 1

1

C 2

3. .6.61 V 4. .6.44 ms 5. a) .5.87 ms 6.a)
Answers 1. B 2.a) .12 V ..12 V e

t
.0.16 ms

b) .5 V
b) .2.65 V

6.b) i( )t = ..45 mA e

t
.3.2 ms c) .12 V ..12 V e

t
.3.2 ms d) .1.3 mJ

dissipated in resistorECE 2210 / 00    homework  #  10



ECE 2210 / 00    homework  #  11 Due:  Fri, 10/2/20 a

1. A 12 V car ignition coil has an inductance of 10 mH and resistance of 2 Ω (so its equivalent circuit is a 10 mH 
inductor in series with a 2 Ω resistor).  Calculate how long it takes the current to build up to 95% of its 
maximum value after a 12 V battery is connected to the coil.

2. A constant voltage is applied to a series RL circuit by closing a switch.  The voltage across L is 30 volts at t = 0 and 
drops to 6 volts at t = .0025 sec. If  L = 0.2 H, what must be the value of R?

3. In the circuit shown, the switch is closed at t = 0.  
Find the transient current expression.

4. In the circuit shown, the switch is closed on position 1 at 
t = 0, and then instantly moved to position 2 after 1 
millisecond. Find the time at which the current is zero 
and reversing its direction.

R 1
.30 Ω

R 2
.40 Ω

V in
.100 V R .400 Ω

V in1
.40 V V in2

.40 V
L .0.1 henry

R 3
.10 Ω L .0.2 henry

note the different battery directions

If you learn to use the complex math feature of your calculator, you may use that to work the following problems.  
In that case you may report the answers without showing any work.

5. Convert the following complex numbers to polar form (m/θ or mejθ).
a) 1 j b) 2.6 8.7j c) 3 4j d) 3 4j e) 3 4j f) 3 4j

6. Convert the following complex numbers to rectangular form (a + bj).

a) .10 e
..j 60 deg b) .0.4 e

..j 12 deg c) .1500 e
..j π

2
rad

d) .10 e
..j 45 deg e) .20 e

..j 120 deg f) .30 e
..j 210 deg

7. Perform the following additions and subtractions of complex numbers.

a) ( )3 2j ( )6 9j b) ( )9 10j ( )9 10j c) ( )2 2j ( )6 9j d) ( )3 0j ( )0 9j

e) ( )5 6j .5 e
..j 53 deg f) ( )2 3j .8 e

..j 37 deg

8. Perform the following multiplications of complex numbers.

a) .( )8 j 3 b) .( )3 2j j c) ..20 e
..j 40 deg .10 e

..j 60 deg d) .( )6 9j .10 e
..j 60 deg e) .( )2 j ( )6 9j

9. Perform the following divisions of complex numbers.

a)
.20 e

..j 40 deg

.10 e
..j 60 deg

b)
9 10j

.3 e
..j 20 deg

c)
3 0j

0 9j
d)

2 2j

6 9j

Answers

1. .15 ms 2. .129 Ω 3. ..1.25 A 1 e

t
.1.25 ms 4. .1.312 ms

5. a) .1.414 e
.j45 deg b) .9.08 e

..j 73.4 deg c) .5 e
..j 53.1 deg d) .5 e

..j 53.1 deg e) .5 e
..j 126.9 deg f) .5 e

..j 126.9 deg

6. a) 5 .8.66 j b) 0.391 .0.083 j c) .1500 j d) 7.071 .7.071 j e) 10 .17.321 j f) 25.981 .15 j

7. a) 9 .11 j b) .20 j c) 8 .7 j d) 3 .9 j e) 8.009 .9.993 j f) 8.389 .7.815 j

8. a) 24 .3 j b) 2 .3 j c) .200 e
..j 100 deg d) .108 e

..j 176 deg e) .24.2 e
..j 82.9 deg

9. a) .2 e
..j 20 deg b) .4.485 e

..j 28.01 deg

c) .0.333 e
..j 90 deg d) 0.051 0.256j ECE 2210 / 00    homework  #  11


