ECE 2210 Lectures notes Thévenin & Norton Equivalent Circuits Simple Model of a Real Source

Real sources are not ideal, but we will model them with two ideal components.

Thévevin Equivalent Circuit

The same model can be used for any combination of sources and resistors.

Thévenin equivalent

To calculate a circuit's Thévenin equivalent:

- 1) Remove the load and calculate the open-circuit voltage where the load used to be. This is the Thévenin voltage (V_{Th}).
- 2) Zero all the sources.

(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.) 3) Compute the total resistance between the load terminals.

- (DO NOT include the load in this resistance.) This is the Thévenin source resistance (R_{Th}).
- 4) Draw the Thévenin equivalent circuit and add your values.

Norton equivalent

To calculate a circuit's Norton equivalent:

- 1) Replace the load with a short (a wire) and calculate the short-circuit current in this wire. This is the Norton current (I_N) . Remove the short.
- 2) Zero all the sources.
- (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.) 3) Compute the total resistance between the load terminals.

(DO NOT include the load in this resistance.) This is the Norton source resistance (R_N). (Exactly the same as the Thévenin source resistance (R_{Th})).

4) Draw the Norton equivalent circuit and add your values.

OR (the more common way)...

1) Find the Thévenin equivalent circuit.

2) Convert to Norton circuit, then >>> $R_N = R_{Th}$

and
$$I_N = \frac{V_{Th}}{R_{Th}}$$

Thévevin & Norton Examples

Ex 1 Find the Thévenin equivalent:

To calculate a circuit's Thévenin equivalent:

1) Remove the load and calculate the open-circuit voltage where the load used to be.

This is the Thévenin voltage (V_{Th}).

2) Zero all the sources.

(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)

3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Thévenin source resistance (R_{Th}) .

 $\begin{cases} R_{L} = 60 \cdot \Omega \\ V_{L} = V_{Th} \cdot \frac{R_{L}}{R_{Th} + R_{L}} = 10 \cdot V \end{cases}$

 $I_{L} = \frac{V_{Th}}{R_{Th} + R_{L}} = 166.7 \cdot mA$

Find the Thevenin resistance:

 $R_{Th} := \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \qquad R_{Th} = 30 \cdot \Omega$

4) Draw the Thévenin equivalent circuit and add your values.

Thevenin equivalent circuit:

If the load were reconnected:

 $V_{\text{Th}} = 15 \cdot V_{\text{Th}}$

 $R_{Th} = 30 \cdot \Omega$

b) Find the Norton equivalent circuit:

 $P_{L} = 10 \cdot V \cdot 166.7 \cdot mA = 1.667 \cdot W$

Norton equivalent circuit:

 $\begin{bmatrix}
I_N := \frac{V_S}{R_1} \\
I_N = 500 \cdot mA
\end{bmatrix}
\begin{bmatrix}
I_N := \frac{V_Th}{R_Th} \\
I_N = 500 \cdot mA
\end{bmatrix}
\begin{bmatrix}
R_N := R_Th \\
R_N = 30 \cdot \Omega
\end{bmatrix}$

	Original Circuit				Thévenin Circuit		
R _L	V _L		I L		Ι _{Ι.}		
$R_{L} = 0 \cdot \Omega$	0·V		$\frac{V_S}{R_1} = 500$	PmA	$\frac{V_{\text{Th}}}{R_{\text{Th}} + R_{\text{L}}} = 50$	00•mA	$500 \cdot mA \cdot 0 \cdot \Omega = 0 \cdot V$
		Using either	numbers: I	$V_{L} = V_{L} I_{I}$	$= 0 \cdot W$		
$R_{L} = 10 \Omega$	$R_0 := \frac{1}{\frac{1}{R_0}}$	$\frac{1}{1}$	$R_0 = 9.231$ •	Ω	$I_L := \frac{V_{Th}}{R_{Th} + R}$	– L	$V_L = I_L R_L$
	к2	мΓ			$I_L = 375 \cdot mA$		$V_{\rm L} = 3.75 \cdot V$
	V _L = V	$S \cdot \frac{R_{o}}{R_{1} + R_{o}} = 3.$	$75 \cdot V$ $I_L = \frac{V_L}{R_L}$	= 375 •mA Us	sing either numbe	ers: P ₁ =	$V_{L}I_{L} = 1.406 \cdot W$
Repeat these					и _L =	V _L =	LL
resistors		R ₀			V Th		
$R_{L_i} =$	R _{Oi}	$ \frac{V_{L}}{V_{S} \cdot \frac{R_{O_{i}}}{R_{1} + R_{O_{i}}}}{V_{S} \cdot \frac{V_{L}}{P_{1} + P_{O_{i}}}} $	R L		$\frac{\frac{V_{Th}}{R_{Th}+R_{L_{i}}}}{\frac{mA}{mA}}$	$I_{L_i} R_i$	$\frac{1}{2}$ $\frac{P_{L_i}}{W}$
$0 \cdot \Omega$	Ω	V	mA		mA	V	w I Cî
1.22	0.992	0.484	483.871		500 483.871	0 0.484	0 0.234
$\frac{10 \cdot \Omega}{20 \cdot \Omega}$	9.231 17.143	3.75	375 300		375 300	3.75	1.406
<u>30·Ω</u>	24	7.5	250		250	7.5	1.875 max
$\frac{40\cdot\Omega}{60\cdot\Omega}$	30 40	8.571	214.286 166.667		214.286 166.667	8.571	1.837
120·Ω	60	10 12	100.007		100.007	10	1.667
$\frac{240 \cdot \Omega}{\infty \cdot \Omega}$	80 120	13.333 15	55.556		55.556 0	13.333	4
∞.75	120	15	0		0	15	0
¹⁵ T			Plots	² T	max		
volts				watts	<i>t</i> **		
	*			1.5 +			
10 -	×	_				*	
v _{Li}	ľ	*		$\stackrel{P_{L_{ii}}}{+}$			
5 -		×					
		×		0.5	Power deliver as a fun	red to the lo action of R ₁	ad (R _L)
			\mathbf{X}	F			

 ${}^{\rm I}{}_{\rm L_i} \quad \text{ amps} \quad$

c) Show that the Thévenin circuit is indeed equivalent to the original at several values of R₁.

ECE 2210 Thevenin notes p4

Ω

R _{Lii}

Maximum power transfer

If I wanted to maximize the power dissipated by the load, what R_L would I choose?

$$\frac{R_{s}}{V_{s}} = \frac{V_{L}^{2}}{R_{L}} = \left(\frac{R_{L}}{R_{s}+R_{L}} \cdot V_{s}\right)^{2} \cdot \frac{1}{R_{L}} = \frac{R_{L}^{2}}{\left(R_{s}+R_{L}\right)^{2}} \cdot V_{s}^{2} \cdot \frac{1}{R_{L}}$$

$$= \frac{R_{L}^{2}}{R_{s}^{2}+2 \cdot R_{s} \cdot R_{L}+R_{L}^{2}} \cdot V_{s}^{2} \cdot \frac{1}{R_{L}} = \frac{R_{L}}{R_{s}^{2}+2 \cdot R_{s} \cdot R_{L}+R_{L}^{2}} \cdot V_{s}^{2}$$

$$= \frac{1}{\frac{R_{s}^{2}}{R_{L}^{2}}+2 \cdot R_{s}+R_{L}} \cdot V_{s}^{2}$$
Next step would be to differentiate $\frac{d}{dR_{L}}P_{L}(R_{L})$, set this equal to 0 and solve for R_{L} to find the maximum

Unfortunately this function is a pain to differentiate. What if we just differentiate the denominator and find its minimum, wouldn't that work just as well?

$$\frac{d}{dR_{L}} \left(\frac{R_{S}^{2}}{R_{L}} + 2 \cdot R_{S} + R_{L} \right) = -1 \cdot \frac{R_{S}^{2}}{R_{L}^{2}} + 0 + 1 = 0$$

 $P_{L}(R_{L}) = R_{S}$

All you need to remember is:

Maximum power transfer happens when: $R_L = R_S$ Just what we saw in Example 1

This is rarely important in power circuitry, where there should be plenty of power and R_S should be small. It is much more likely to be important in signal circuitry where the voltages can be very small and the source resistance may be significant -- say a microphone or a radio antenna.

member is: $R_L = R_S$ to maximize the power dissipation in R_L

What about efficiency?

$$\frac{P_{L}(R_{L})}{P_{S}(R_{L})} = \frac{I^{2} \cdot R_{L}}{I^{2} \cdot (R_{S} + R_{L})} = \frac{R_{L}}{R_{S} + R_{L}}$$

ECE 2210

Thevenin notes p6

First do some simplification:

Divide this voltage between R₂ and R₄:

Find the Thévenin resistance:

If the load were reconnected:

$$V_{L} := V_{Th} \cdot \frac{R_{L}}{R_{Th} + R_{L}} \qquad V_{L} = 1.125 \cdot V$$
$$I_{L} := \frac{V_{Th}}{R_{Th} + R_{L}} \qquad I_{L} = 2.5 \cdot mA$$

b) Find and draw the Norton equivalent circuit.

c) Use your Norton equivalent circuit to find the current through the load.

same as above

d) What value of R_L would result in the maximum power delivery to R_L?

For maximum power transfer $R_L = R_{Th} = 750 \cdot \Omega$

Ex 3 a) Find and draw the Thévenin & Norton equivalent circuits.

R_{Th} = $3.75 \cdot \Omega$

b) Use your Thévenin equivalent circuit to find the voltage across the load.

Find the Thévenin resistance

 $R_{1} = 40 \cdot \Omega$ $R_{2} = 120 \cdot \Omega$ $R_{Th} := \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2} + R_{3}}}$ $R_{3} = 240 \cdot \Omega$

Thévenin equivalent circuit:

Norton equivalent circuit:
$$I_N := \frac{V_{Th}}{R_{Th}}$$

 $I_N = 191.7 \cdot mA$ $R_N := R_{Th}$
 $R_N = 36 \cdot \Omega$

- **Ex 5** A NiCad Battery pack is used to power a cell phone. When the phone is switched on the battery pack voltage drops from 4.80 V to 4.65 V and the cell phone draws 50 mA. V $_{S}$:= 4.80 V V $_{50}$:= 4.65 V
 - a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.

b) The cell phone is used to make a call. Now it draws 300 mA. What is the battery pack voltage now?

c) The battery pack is placed in a charger. The charger supplies 5.10 V. How much current flows into the battery pack?

Ex 6 Consider the circuit at right.

a) What value of load resistor (R_L) would you choose if you wanted to maximize the power dissipation in that load resistor.

$$R_L := R_S$$
 $R_L = 8 \cdot \Omega$

b) With that load resistor (R_r) find the power dissipation in the load.

$$I_L := \frac{I_S}{2}$$
 $P_L = I_L^2 \cdot R_L = 2 \cdot W$

Thévenin equivalent circuit:

Thevenin & Norton equivalent circuits

1. For each of the circuits below, find and draw the Thevenin equivalent circuit.

- 2. For the circuit of problem 1a, find the voltage across R_L (V_L) and the current through R_L (I_L) using your Thevenin equivalent circuit.
- For each of the circuits in problem 1, find and draw the Norton equivalent circuit.
- 4. For the circuit of problem 1b, find V_L and I_L using your Norton equivalent circuit.
- 5. For the circuit shown at right, use Thevenin's theorem to find the current through the 50 Ω resistor R₄.

Source resistance

- 7. The terminal voltage of a car's battery drops from 12.5 V to 8.5 volts when starting. The starter motor draws 60 A of current.
 - a) Draw the voltage-source model (Thevenin equivalent) of this battery. Include the values of V_S and R_S.
 - b) Draw the current-source model (Norton equivalent) of this battery. Include the values of Is and Rs.
 - c) Which of these two models is more appropriate for the car battery?
 - d) What terminal voltage would you expect if this battery were being charged at 20 A?

<u>Answers</u>

1. a) 4.091·V ,	28.4·kΩ	b) 1.1·V , 18.3·Ω	2. 1.69·V, 84.6·μA	
3. a) 0.144·mA ,	$28.4 \cdot k\Omega$	b) $60{\cdot}mA$, $18.3{\cdot}\Omega$	4. 3.16·mA, 1.042·V	5. 1.88⋅mA
6. 0.19·A	7. a) V _S = 12.	$5 \cdot V = R_S := 0.0667 \cdot \Omega$	b) $I_{S} = 187.5 \cdot A$	$R_{S} = 0.0667 \cdot \Omega$
ECE 2210 / 0	0 homewo	ork #5	c) Thevenin	d) 13.83·V

2nd hint: Nodal analysis is even easier.