ECE 2200/10 Lecture 1 Introduction to Electrical Engineering for non-majors

2200 = 1/2 semester (Mining, Mat. Sci.)
ECE 2200 Without the Physics is hard, Plan on it!
2200, Decide today when you want to take the final:
 Bad option: In your last lab session, Start labs Today
 If you don’t take the later final you will have to start labs THIS WEEK.

2210 = Full semester (Mechanical, Chemical, etc.)
 Labs start next week Possible new labs, Th, 10:45 & F, 11:50
 2210 Final Friday, April 24, 8:00am
 Subject to change, listen in class
 Make sure you are registered for the right class (2200 or 2210) and that you have the right syllabus.

BOTH
Bring a lab notebook and a U-card with $20 to 1st lab.
Homeworks are due by 5:00 pm in locker __________ (see map for location of lockers)
WARNING: HWs are often due on non-class days.

How to survive
1. Easiest way to get through school is to actually learn and retain what you are asked to learn.
 Even if you’re too busy, don’t lose your good study practices.
 What you “just get by” on today will cost you later.
 Don’t fall for the “I’ll never need to know this” trap. Sure, much of what you learn you may not use, but you will need some of it, some day, either in the current class, future classes, or maybe sometime in your career. Don’t waste time second-guessing the curriculum, it’ll still be easier to just do your best to learn and retain what is covered.

2. Don’t fall for the “traps”.
 Homework answers, Problem session solutions, Posted solutions, Lecture notes.

3. KEEP UP! Use calendar.

4. Make “permanent notes” after you’ve finished a subject or section and feel that you know it.

Lecture

<table>
<thead>
<tr>
<th>Basic electrical quantities</th>
<th>Letter used</th>
<th>Units</th>
<th>Fluid Analogy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge, actually moves</td>
<td>Q</td>
<td>Coulomb (C)</td>
<td>m³</td>
</tr>
<tr>
<td>Current, like fluid flow</td>
<td>I = (\frac{Q}{\text{sec}})</td>
<td>Amp (A, mA, (\mu)A,...)</td>
<td>m³ (/) sec</td>
</tr>
<tr>
<td>Voltage, like pressure</td>
<td>V or E</td>
<td>volt (V, mV, kV,...)</td>
<td>Pa = (1 \cdot \frac{N}{m^2})</td>
</tr>
<tr>
<td>Resistance</td>
<td>R = (\frac{V}{I})</td>
<td>Ohm ((\Omega), k(\Omega), M(\Omega),...)</td>
<td></td>
</tr>
<tr>
<td>Conductance</td>
<td>G = (\frac{1}{R})</td>
<td>Siemens (S, also mho, old unit)</td>
<td></td>
</tr>
<tr>
<td>Power = energy/time</td>
<td>P = V \cdot I</td>
<td>Watt (W, mW, kW, MW,...)</td>
<td>W</td>
</tr>
</tbody>
</table>

Symbols (ideal)

Node = All points connected by wire

battery

Variable potentiometer

Resistors

ECE 2210 Lecture 1 notes p1
KCL, Kirchhoff's Current Law
\[I_{\text{in}} = I_{\text{out}} \] of any point, part, or section

\[
\begin{align*}
\text{in} & \quad 2 \text{m}^3/\text{s} \\
\rightarrow & \quad \text{metal wire} \\
\text{(conductor)} & \quad \leftarrow \\
\text{out} & \quad \text{in} \\
2 \text{C/s} & = 2 \text{A}
\end{align*}
\]

\[
\begin{align*}
\text{in} & \quad 2 \text{m}^3/\text{s} \\
\rightarrow & \quad \text{out} \\
3 \text{m}^3/\text{s} & \quad \text{in} \\
\end{align*}
\]

Conductors
- Massless fluid in our analogy
- No gravity effects
- No Bernoulli effects

Reasonable because:
- Electron mass is \(9.11 \times 10^{-31} \text{ kg} \)
- Electron charge is \(1.6 \times 10^{-19} \text{ C} \)
- Negative charge flows in negative direction

Battery also obeys KCL
No accumulation of charge anywhere, so it must circulate around.
 Leads to the concept of a "Circuit"

Voltage is like pressure
KVL, Kirchhoff's Voltage Law
\[\text{V gains} = \text{V drops} \]
around any loop

\[
\begin{align*}
\Delta + & \quad \Delta + \\
A & \quad + \\
\text{B} & \quad - \\
\text{C} & \quad + \\
\text{D} & \quad - \\
\end{align*}
\]
Ohm's law (resistors)

\[V = I \cdot R \]

\[I = \frac{V}{R} \]

\[R = \frac{V}{I} \]

Definition of resistance and the unit "Ω".

Power

\[\text{flow} \quad \frac{m^3}{\text{sec}} \quad \text{pressure} \quad \frac{N}{m^3} \quad \text{flow x pressure:} \quad \frac{m^3}{\text{sec}} \cdot \frac{N}{m^3} = \frac{m \cdot N}{\text{sec} \cdot 1} = \frac{N \cdot m}{\text{sec}} = \text{Joule} = W = \text{power} \]

Same for electricity power \(P = I \cdot V \)

Power dissipated by resistors:

\[P = V \cdot I = \frac{V^2}{R} = I^2 \cdot R \]

Series Resistors

\[V_T = V_1 + V_2 \]

\[R_{eq} = \frac{V_T}{I} = \frac{V_1 + V_2}{I} = \frac{V_1}{I} + \frac{V_2}{I} = R_1 + R_2 \]

Resistors are in series if and only if exactly the same current flows through each resistor.

Parallel Resistors

\[I_T = \frac{V_S}{R_1} + \frac{V_S}{R_2} \]

\[R_{eq} = \frac{V_S}{I_T} = \frac{V_S}{\frac{V_S}{R_1} + \frac{V_S}{R_2}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \]

Resistors are in parallel if and only if the same voltage is across each resistor.
All resistor-only networks can be reduced to a single equivalent, but not always by means of series and parallel concepts.

Voltage Divider

series: \(R_{eq} = R_1 + R_2 + R_3 + \ldots \)

Exactly the same **current** through each resistor

Voltage divider:
\[
V_{Rn} = V_{total} \cdot \frac{R_n}{R_1 + R_2 + R_3 + \ldots}
\]

Current Divider

parallel: \(R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots} \)

Exactly the same **voltage** across each resistor

current divider:
\[
I_{Rn} = I_{total} \cdot \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots}
\]

May have to combine some resistors first to get series and parallel resistors to use with divider expressions.
Resistors

Sources

Battery

Voltage sources

Battery

Cell

Current source

Less intuitive, less like sources we are used to seeing.

Ground

Ground is considered zero volts and is a reference for other voltages.
Nodes & Branches

Node = all points connected by wire, all at same voltage (potential)

Branch = all parts with the same current

Meters

\[\text{Ideal: } \begin{align*}
\text{Voltmeter} & \rightarrow \text{open} \\
\text{Ammeter} & \rightarrow \text{short}
\end{align*} \]

Analog meters

\[\text{Multimeter} \]

Digital meter

\[\text{Input & Range Selection} \quad \text{Sample and Hold} \quad \text{Analog to Digital Converter} \quad \text{Display} \]
ECE 2210 Lecture 4 notes Superposition

Circuits with more than one Source

Recall Statics. To find the reaction at each support, to each load on a beam (or anything else) can be found separately for each load. The total reactions are simply the sum of the

\[P_1 + P_2 + W = + + W \]

Superposition

For circuits with more than one source.

1) Zero all but one source. (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
2) Compute your wanted voltage or current due to the remaining source. Careful, some may be negative.
3) Repeat the first two steps for all the sources.
4) Sum all the contributions from all the sources to find the actual voltage or current. Watch your signs!

Ex1. Use the method of superposition to find the current \(I_2 \) (through \(R_2 \)) and the voltage across \(R_1 \) (\(V_{R1} \)). Be sure to clearly show and circle your intermediate results.

Superposition:

Eliminate current source

\[I_{2, Vs} := \frac{V_S}{R_1 + R_2} \quad I_{2, Vs} = 20 \, \text{mA} \]

\[V_{R1, Vs} := \frac{R_1}{R_1 + R_2} \cdot V_S \quad V_{R1, Vs} = 2 \, \text{V} \]

Eliminate voltage source

\[I_{2, Is} := \frac{1}{R_2} \cdot \frac{1}{R_1 + R_2} \cdot I_S \quad I_{2, Is} = -6 \, \text{mA} \]

\[V_{R1, Is} := -I_{2, Is} \cdot R_2 \quad V_{R1, Is} = 1.2 \, \text{V} \]

Add results

\[I_2 := I_{2, Vs} + I_{2, Is} \quad I_2 = 14 \, \text{mA} \]

\[V_{R1} := V_{R1, Vs} + V_{R1, Is} \quad V_{R1} = 3.2 \, \text{V} \]
Ex. Use the method of superposition to find the voltage across through \(R_2 \) and the current through \(R_3 \). Be sure to clearly show and circle your intermediate results.

Eliminate current source

\[V_{R2, Vs} := \frac{R_2}{R_2 + R_3} \cdot V_S \]

\[V_{R2, Vs} = 4.8 \text{ V} \]

\[I_{R3, Vs} := \frac{V_S}{R_2 + R_3} \]

\[I_{R3, Vs} = -2.4 \text{ mA} \]

Eliminate voltage source

\[V_{R2, Is} := I_S \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} \]

\[V_{R2, Is} = 2.4 \text{ V} \]

\[I_{R3, Is} := \frac{1}{\frac{1}{R_3} + \frac{1}{R_2}} \cdot I_S \]

\[I_{R3, Is} = 0.8 \text{ mA} \]

Add results

\[V_{R2} := V_{R2, Vs} + V_{R2, Is} \]

\[V_{R2} = 7.2 \text{ V} \]

\[I_{R3} := I_{R3, Vs} + I_{R3, Is} \]

\[I_{R3} = -1.6 \text{ mA} \]
Model of a Real Source

Real sources are not ideal, but we will model them with two ideal components.

\[R_L = 0 \text{ (short)} \]

\[V_{term} + R_L V_L = R_S \text{ (max power)} \]

\[V_{term} \]

Note: \(R_L \) is NOT part of the Thévenin equivalent circuit and does not need to be shown.

Thévenin Equivalent Circuit

The same model can be used for any combination of sources and resistors.

Thévenin equivalent

To calculate a circuit's Thévenin equivalent:

1) Remove the load and calculate the open-circuit voltage where the load used to be. This is the Thévenin voltage \(V_{Th} \).

2) Zero all the sources.
 (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)

3) Compute the total resistance between the load terminals.
 (DO NOT include the load in this resistance.) This is the Thévenin source resistance \(R_{Th} \).

4) Draw the Thévenin equivalent circuit and add your values.
Norton equivalent
To calculate a circuit's Norton equivalent:
1) Replace the load with a short (a wire) and calculate the short-circuit current in this wire.
 This is the Norton current (I_N). Remove the short.
2) Zero all the sources.
 (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals.
 (DO NOT include the load in this resistance.) This is the Norton source resistance (R_N).
 (Exactly the same as the Thévenin source resistance (R_{Th})).
4) Draw the Norton equivalent circuit and add your values.

OR (the more common way)...
1) Find the Thévenin equivalent circuit.
2) Convert to Norton circuit, then >>> $R_N = R_{Th}$ and $I_N = \frac{V_{Th}}{R_{Th}}$.
Ex 1 Find the Thévenin equivalent:

![Thévenin equivalent circuit](image)

To calculate a circuit's Thévenin equivalent:
1) Remove the load and calculate the open-circuit voltage where the load used to be. This is the Thévenin voltage (V_{Th}).

![Open circuit voltage](image)

$$V_{oc} = V_{Th} = V_S \left(\frac{R_2}{R_1 + R_2} \right)$$

$$V_{Th} = 15 \cdot V$$

2) Zero all the sources. (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)

![Zero the source](image)

3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Thévenin source resistance (R_{Th}).

![Finding the Thévenin resistance](image)

$$R_{Th} := \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{Th} = 30 \cdot \Omega$$

4) Draw the Thévenin equivalent circuit and add your values.

![Thevenin equivalent circuit](image)

If the load were reconnected:

![Load reconnected](image)

$$V_L = \frac{V_{Th} \cdot R_L}{R_{Th} + R_L} = 10 \cdot V$$

$$I_L = \frac{V_{Th}}{R_{Th} + R_L} = 166.7 \cdot mA$$

$$P_L = 10 \cdot V \cdot 166.7 \cdot mA = 1667 \cdot W$$

b) Find the Norton equivalent circuit:

![Norton equivalent circuit](image)

$$I_N := \frac{V_S}{R_1}$$

$$I_N = 500 \cdot mA$$

$$V_{Th} = 15 \cdot V$$

$$R_{Th} = 30 \cdot \Omega$$

$$R_N := R_{Th}$$

$$I_N = 500 \cdot mA$$

$$P_L = 10 \cdot V \cdot 166.7 \cdot mA = 1667 \cdot W$$
c) Show that the Thévenin circuit is indeed equivalent to the original at several values of \(R_L \).

<table>
<thead>
<tr>
<th>(R_L)</th>
<th>(V_L)</th>
<th>(I_L)</th>
<th>(R_{Th})</th>
<th>(V_{Th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (\Omega)</td>
<td>0-V</td>
<td>500 mA</td>
<td>500 mA (\cdot) 0 (\Omega) = 0-V</td>
<td></td>
</tr>
</tbody>
</table>

Using either numbers: \(P_L = V_L \cdot I_L = 0-W \)

\(R_L = 10 \Omega \)

\(R_o = \frac{1}{\frac{1}{R_2} + \frac{1}{R_L}} = 9.231 \Omega \)

\(V_L = \frac{V_S}{R_1 + R_o} = 3.75 \cdot V \)

\(I_L = \frac{V_L}{R_L} = 375 \cdot mA \)

Using either numbers: \(P_L = V_L \cdot I_L = 1.406 \cdot W \)

Repeat these calculations for a number of load resistors:

<table>
<thead>
<tr>
<th>(R_L)</th>
<th>(R_o)</th>
<th>(V_S)</th>
<th>(I_L)</th>
<th>(P_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (\Omega)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 (\Omega)</td>
<td>0.992</td>
<td>0.484</td>
<td>483.871</td>
<td>375</td>
</tr>
<tr>
<td>10 (\Omega)</td>
<td>9.231</td>
<td>3.75</td>
<td>375</td>
<td>6</td>
</tr>
<tr>
<td>20 (\Omega)</td>
<td>17.143</td>
<td>6</td>
<td>300</td>
<td>1.8</td>
</tr>
<tr>
<td>30 (\Omega)</td>
<td>24</td>
<td>7.5</td>
<td>250</td>
<td>1.875</td>
</tr>
<tr>
<td>40 (\Omega)</td>
<td>30</td>
<td>8.571</td>
<td>214.286</td>
<td>1.837</td>
</tr>
<tr>
<td>60 (\Omega)</td>
<td>40</td>
<td>10</td>
<td>166.667</td>
<td>1.667</td>
</tr>
<tr>
<td>120 (\Omega)</td>
<td>60</td>
<td>12</td>
<td>100</td>
<td>1.2</td>
</tr>
<tr>
<td>240 (\Omega)</td>
<td>80</td>
<td>13.333</td>
<td>55.556</td>
<td>0.741</td>
</tr>
<tr>
<td>(\infty)</td>
<td>120</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Plots:

- Power delivered to the load \((R_L) \) as a function of \(R_L \)
Maximum power transfer

If I wanted to maximize the power dissipated by the load, what R_L would I choose?

Maximum power transfer happens when:

$$R_L = R_S$$

Just what we saw in Example 1

This is rarely important in power circuitry, where there should be plenty of power and R_S should be small. It is much more likely to be important in signal circuitry where the voltages can be very small and the source resistance may be significant -- say a microphone or a radio antenna.

All you need to remember is: $R_L = R_S$ to maximize the power dissipation in R_L

What about efficiency?

$$\frac{P_L(R_L)}{P_S(R_L)} = \frac{I^2 R_L}{I^2 (R_S + R_L)} = \frac{R_L}{R_S + R_L}$$

The bigger R_L is, the higher the efficiency.
Ex 2 a) Find and draw the Thévenin equivalent circuit.

\[
\text{R}_1 := 1.5 \text{ kΩ} \quad \text{R}_2 := 2 \text{ kΩ} \\
\text{R}_3 := 3 \text{ kΩ} \quad \text{R}_4 := 1 \text{ kΩ} \\
\text{R}_L := 450 \text{ Ω} \\
\text{V}_{\text{S}} := 18 \text{ V}
\]

First do some simplification:

\[
\frac{1}{R_{eq234}} := \frac{1}{R_3} + \frac{1}{R_2 + R_4}
\]

Divide this voltage between \(R_2 \) and \(R_4 \):

\[
V_{234} = 9 \cdot V \\
V_{\text{Th}} := \frac{R_4}{R_2 + R_4} \cdot V_{234} \\
V_{\text{Th}} = 3 \cdot V
\]

Find the Thévenin resistance:

\[
R_{\text{Th}} := \frac{1}{\frac{1}{R_4} + \frac{1}{R_2 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_3}}}}
\]

\[
R_{\text{Th}} = 750 \text{ Ω}
\]

Thévenin equivalent circuit:

\[
V_{\text{Th}} = 3 \cdot V
\]

If the load were reconnected:

\[
V_{L} := V_{\text{Th}} \cdot \frac{R_L}{R_{\text{Th}} + R_L} \\
V_{L} = 1.125 \cdot V \\
I_{L} := \frac{V_{\text{Th}}}{R_{\text{Th}} + R_L} \\
I_{L} = 2.5 \text{ mA}
\]

b) Find and draw the Norton equivalent circuit.

\[
I_{N} := \frac{V_{\text{Th}}}{R_{\text{Th}}} \\
I_{N} = 4 \text{ mA}
\]

\[
R_{N} := R_{\text{Th}} \\
R_{N} = 750 \text{ Ω}
\]
c) Use your Norton equivalent circuit to find the current through the load.

\[
I_{L} = \frac{1}{R_{N} + \frac{1}{R_{L}}} I_{N}
\]

\[
V_{L} = I_{L} R_{L}
\]

\[
I_{N} = 4 \text{ mA}
\]

\[
R_{N} = 450 \Omega
\]

\[
I_{L} = 2.5 \text{ mA}
\]

\[
V_{L} = 1.125 \text{ V}
\]

same as above

d) What value of \(R_{L} \) would result in the maximum power delivery to \(R_{L} \)?

For maximum power transfer \(R_{L} = R_{Th} = 750 \Omega \)

e) What is the maximum power transfer?

\[
P_{L} = \frac{V_{L}^{2}}{R_{L}} = 3 \text{ mW}
\]

Ex 3

a) Find and draw the Thévenin & Norton equivalent circuits.

Thévenin equivalent circuit:

\[
R_{Th} = 3.75 \Omega
\]

\[
V_{Th} = 12.5 \text{ V}
\]

Norton equivalent circuit:

\[
I_{N} = \frac{V_{Th}}{R_{Th}} = 3.333 \text{ A}
\]

\[
R_{N} = 3.8 \Omega
\]

b) Use your Thévenin equivalent circuit to find the voltage across the load.

\[
V_{L} = \frac{R_{L}}{R_{Th} + R_{L}} V_{Th} = 10.526 \text{ V}
\]
Ex 4 a) Find and draw the Thévenin & Norton equivalent circuits.

ECE 2210 Lecture 5 & 6 notes p8

Use superposition to find V_{Th}.

Thévenin equivalent circuit:

$$V_{Th} = 6.9 \cdot V$$

Norton equivalent circuit:

$$I_N = 191.7 \cdot mA$$
Ex 5 A NiCad Battery pack is used to power a cell phone. When the phone is switched on the battery pack voltage drops from 4.80 V to 4.65 V and the cell phone draws 50 mA.

\[V_{S} = 4.80 \cdot V \quad V_{50} = 4.65 \cdot V \]

a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.

\[R_{S} = \frac{V_{S} - V_{50}}{50 \cdot mA} = 4.65 \cdot V - 4.80 \cdot V = 0.15 \\Omega \]

\[V_{S} = 4.8 \cdot V \]

\[V_{B} = V_{S} - I_{\text{call}} \cdot R_{S} = 4.8 \cdot V - 300 \cdot mA \cdot 0.15 \\Omega = 3.9 \cdot V \]

b) The cell phone is used to make a call. Now it draws 300 mA. What is the battery pack voltage now?

\[V_{B} = V_{S} - I_{\text{call}} \cdot R_{S} = 4.8 \cdot V - 300 \cdot mA \cdot 0.15 \\Omega = 3.9 \cdot V \]

c) The battery pack is placed in a charger. The charger supplies 5.10 V. How much current flows into the battery pack?

\[I_{\text{chg}} = \frac{V_{\text{chg}} - V_{S}}{R_{S}} = \frac{5.10 \cdot V - 4.8 \cdot V}{0.15 \\Omega} = 200 \cdot mA \]

Ex 6 Consider the circuit at right.

a) What value of load resistor \((R_{L})\) would you choose if you wanted to maximize the power dissipation in that load resistor.

\[R_{L} \leq R_{S} \quad R_{L} = 8 \cdot \Omega \]

b) With that load resistor \((R_{L})\) find the power dissipation in the load.

\[I_{L} = \frac{I_{S}}{2} \quad P_{L} = I_{L}^{2} \cdot R_{L} = 2 \cdot W \]
Use superposition to find \(V_{Th} \).

current divider:

\[
I_{R4} = \frac{1}{\frac{1}{R_2 + R_4 + R_6} + \frac{1}{R_1}} I_S
\]

\(I_{R4} = 35.556 \text{ mA} \)

\(V_{Th.I} = I_{R4} R_4 \)

\(V_{Th.I} = 3.2 \text{ V} \)

\(R_1 = 40 \Omega \)
\(R_2 = 12.5 \Omega \)
\(R_3 = 10 \Omega \)
\(R_4 = 90 \Omega \)
\(R_6 = 60 \Omega \)
\(V_S = 9 \text{ V} \)
\(I_S = 180 \text{ mA} \)
\(R_L = 30 \Omega \)
\(R_4 = 90 \Omega \)
\(R_6 = 60 \Omega \)
\(V_{S} = 9 \text{ V} \)
\(I_{S} = 180 \text{ mA} \)
\(R_{L} = 30 \Omega \)
\(I_{L} = 80 \text{ mA} \)
\(V_{L} = I_{L} R_{L} = 2.4 \text{ V} \)

Thévenin equivalent circuit:

\(V_{Th} = 7.2 \text{ V} \)

\(R_{Th} = 60 \Omega \)

\(I_{L} := \frac{V_{Th}}{R_{Th} + R_L} \)

\(R_L = 30 \Omega \)

\(I_N := \frac{V_{Th}}{R_{Th}} \)

\(I_N = 120 \text{ mA} \)

Norton equivalent circuit:

\(I_N := \frac{V_{Th}}{R_{Th}} \)

\(R_N := R_{Th} \)

\(R_N = 60 \Omega \)
ECE 2210 Lecture 7 notes Nodal Analysis

General Network Analysis
In many cases you have multiple unknowns in a circuit, say the voltages across multiple resistors. Network analysis is a systematic way to generate multiple equations which can be solved to find the multiple unknowns. These equations are based on basic Kirchoff’s and Ohm’s laws.

Loop or Mesh Analysis You may have used these methods in previous classes, particularly in Physics. The best thing to do now is to forget all that. Loop analysis is rarely the easiest way to analyze a circuit and is inherently confusing. Hopefully I’ve brought you to a stage where you have some intuitive feeling for how currents flow in circuits. I don’t want to ruin that now by screwing around with loop currents that don’t really exist.

Nodal analysis This is a much better method. It’s just as powerful, usually easier, and helps you develop your intuitive feeling for how circuits work.

Nodal Analysis
Node = all points connected by wire, all at same voltage (potential)

Ground: One node in the circuit which will be our reference node. Ground, by definition, will be the zero voltage node. All other node voltages will be referenced to ground and may be positive or negative. Think of gage pressure in a fluid system. In that case atmospheric pressure is considered zero. If there is no ground in the circuit, define one for yourself. Try to chose a node which is hooked to one side of a voltage source.

Nodal Voltage: The voltage of a node referenced to ground. The objective of nodal analysis is to find all the nodal voltages. If you know the voltage at a node then it’s a “known” node. Ground is a known node (duh, it’s zero). If one end of a known voltage source hooked to ground, then the node on the other end is also known (another duh).

Method: Label all the unknown nodes as; “a”, “b”, “c”, etc. Then the unknown nodal voltages become; V_a, V_b, V_c, etc. Write a KCL equation for each unknown node, defining currents as necessary. Replace each unknown current with an Ohm’s law relationship using the nodal voltages. Now you have just as many equations as unknowns. Solve.

Nodal Analysis Steps
1) If the circuit doesn’t already have a ground, label one node as ground (zero voltage).
 If the ground can be defined as one side of a voltage source, that will make the following steps easier.
 Label the remaining node, either with known voltages or with letters, a, b,
2) Label unknown node voltages as V_a, V_b, ... and label the current in each resistor as I_1, I_2,
3) Write Kirchoff’s current equations for each unknown node.
4) Replace the currents in your KCL equations with expressions like this. \[\frac{V_a - V_b}{R_1} \] Ohm’s law relationship using the nodal voltages.
5) Solve the multiple equations for the multiple unknown voltages.

Nodal Analysis Examples
Ex 1 Use nodal analysis to find the voltage across R_1 (V_{R_1}).

1) See next page
Label one node as ground (zero voltage). By choosing the negative side of a voltage source as ground, the upper-left node is known (10V). Label the remaining nodes, either with known voltages or with letters, a, b,
2) Label unknown node voltages as V_a, V_b, ... and label the current in each resistor as I_1, I_2,

3) Write Kirchhoff’s current equations for node a.

\[I_1 + I_S = I_{R3} \]

4) Replace the currents in the KCL equations with Ohm’s law relationships.

\[
\frac{V_S - V_a}{R_1} + I_S = \frac{V_a - 0}{R_3}
\]

\[
\frac{V_S - V_a}{R_1} + I_S = \frac{V_a}{R_3}
\]

5) Solve:

\[
\frac{V_S}{R_1} + I_S = \frac{V_a}{R_3}
\]

\[
V_a := \frac{1}{\frac{1}{R_1} + \frac{1}{R_3}}
\]

\[V_a = 10.5 \text{V} \]

Multiply both sides by a value that will clear the denominators.

\[
3 \times \frac{10 \text{V} + 4 \text{mA}}{1 \text{k} \Omega} = \left(\frac{V_a}{3 \text{k} \Omega} + \frac{V_a}{1 \text{k} \Omega}\right)3 \text{k} \Omega
\]

\[30 \text{V} + 3 \times 3 \text{k} \Omega \times 4 \text{mA} = V_a + 3 \times V_a \]

\[30 \text{V} + 12 \text{V} = 4 \times V_a \]

\[V_a = \frac{42 \text{V}}{4} = 10.5 \text{V} \]

Either way, you still have to find V_{R1} from V_a.

\[V_{R1} := V_S - V_a \]

\[V_{R1} = -0.5 \times \text{V} \]

V_b doesn’t matter in this case

b) Find the current through R_3 (I_{R3}).

\[I_{R3} = \frac{V_a}{R_3} = 3.5 \text{mA} \]

Ex 2 Same circuit used in Thévenin example, where R_4 was R_L.

1) Define ground and nodes:

2 unknown nodes ---> will need 2 equations
2) Label unknown node voltages as V_a, V_b, ... and label the current in each resistor as I_1, I_2, It doesn't matter if these currents are in the correct directions.

![Circuit Diagram]

3) Write Kirchhoff's current equations for each unknown node.

 - **Node a**

 \[
 I_1 = I_2 + I_4
 \]

 - **Node b**

 \[
 I_2 = I_3 + I_S
 \]

4) Replace the currents in your KCL equations with expressions like this.

 - **Node a**

 \[
 \frac{V_S - V_a}{R_1} = \frac{V_a - V_b}{R_2} + \frac{V_a - 0\cdot V}{R_4}
 \]

 - **Node b**

 \[
 \frac{V_a - V_b}{R_1} = \frac{V_b - 0\cdot V}{R_3} + I_S
 \]

 Now you have just as many equations as unknowns.

5) Solve the multiple equations for the multiple unknown voltages. Solve by any method you like:

 - **Node a**

 \[
 V_a = \frac{V_a - I_S}{R_2} - \frac{1}{R_1} \left(\frac{1}{R_2} + \frac{1}{R_3} \right) + \frac{1}{R_4}
 \]

 - **Node b**

 \[
 V_b = \frac{V_a}{1 + \frac{1}{R_2}}\frac{1}{R_3} + \frac{1}{R_4}
 \]

Or, with numbers

 - **Node a**

 \[
 360\cdot \Omega \cdot \frac{9\cdot V - V_a}{40\cdot \Omega} = \frac{V_a - V_b}{120\cdot \Omega} + \frac{V_a}{72\cdot \Omega} \cdot 360\cdot \Omega
 \]

 - **Node b**

 \[
 240\cdot \Omega \cdot \frac{V_a - V_b}{120\cdot \Omega} = \frac{V_b - 0\cdot V}{240\cdot \Omega} + 50\cdot \text{mA} \cdot 240\cdot \Omega
 \]

 \[
 81\cdot V - 9\cdot V_a = 3\cdot V_a - 3\cdot V_b + 5\cdot V_a
 \]

 \[
 V_a = \frac{2\cdot V_b + V_b + 12\cdot V}{2} = 1.5\cdot V_b + 6\cdot V
 \]

 \[
 81\cdot V - 13.5\cdot V_b - 54\cdot V = 4.5\cdot V_b + 18\cdot V - 3\cdot V_b + 7.5\cdot V_b + 30\cdot V
 \]

 \[
 81\cdot V - 54\cdot V - 18\cdot V - 30\cdot V = -21\cdot V = 4.5\cdot V_b - 3\cdot V_b + 7.5\cdot V_b + 13.5\cdot V_b = 22.5\cdot V_b
 \]

 \[
 V_b = \frac{-21\cdot V}{22.5} = -0.933\cdot V
 \]

 \[
 V_a = 1.5\cdot V_b + 6\cdot V = 4.6\cdot V
 \]

 Same as V_L of Ex 4 of Thévenin examples:
Ex 3 Like Superposition Ex.2

a) Use nodal analysis to find the voltage across $R_2 (V_{R2})$.

You **MUST** show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

1) Define ground and nodes:

2) Label unknown node voltages as V_a, V_b, ... and label the current in each resistor as I_1, I_2,

3) Write Kirchoff's current equations for each unknown node.

 node a: $I_2 + I_{R3} = I_S$

4) Replace the currents in the **KCL** equations with Ohm's law relationships.

 $\frac{V_S - V_a}{R_2} + \frac{0 - V_a}{R_3} = I_S$

 Usually it's easier to put in the numbers at this point

 Multiply both sides by a value that will clear the denominators.

 $6 \cdot k\Omega \left(\frac{12 \cdot V - V_a}{2 \cdot k\Omega} + \frac{0 - V_a}{3 \cdot k\Omega} \right) = 2 \cdot mA \cdot 6 \cdot k\Omega$

 $36 \cdot V - 3 \cdot V_a - 2 \cdot V_a = 12 \cdot V$

 $-5 \cdot V_a = -24 \cdot V$

 $V_a = \frac{-24 \cdot V}{-5} = 4.8 \cdot V$

Remember, we needed to find the voltage across $R_2 (V_{R2})$.

$V_{R2} = V_S - V_a = 7.2 \cdot V$

b) Find the current through $R_3 (I_{R3})$.

$I_{R3} = \frac{0 - V_a}{R_3} = -1.6 \cdot mA$ actually flows the other way
Ex 4 Use nodal analysis to find the voltage across R_5 (V_{R5}) and the current through R_1 (I_{R1}). From exam 1, F09

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

node a:

\[
V_{R5} = \frac{V_{S1} - V_a}{R_1} + I_S = \frac{V_a}{R_2 + R_3} + \frac{V_a - V_{S2}}{R_5}
\]

\[
3000 \cdot \Omega \left(\frac{12 \cdot V}{100 \cdot \Omega} - \frac{V_a}{100 \cdot \Omega} + 63 \cdot mA \right) = \left(\frac{V_a - 6 \cdot V}{500 \cdot \Omega} + \frac{V_a}{600 \cdot \Omega} - \frac{6 \cdot V}{600} \right) \cdot 3000 \cdot \Omega
\]

\[
360 \cdot V - 30 \cdot V = 6 \cdot V_a - 36 \cdot V + 5 \cdot V - 30 \cdot V
\]

\[
V_a = 15 \cdot V
\]

\[
V_{R5} = V_a - V_{S2} = 9 \cdot V
\]

\[
I_{R1} = \frac{V_{S1} - V_a}{R_1} = -30 \cdot mA
\]
What if one side of a voltage source isn’t ground?

\[I_1 + I_{VS2} = I_3 \]

\[\frac{V_{S1} - V_a}{R_1} + ? = I_S \]

What do you put in for \(I_{VS2} \)?

Go to the other side of \(V_{S2} \).

\[\frac{V_{S1} - V_a}{R_1} + \frac{0 - V_b}{R_2} = I_S \]

Only problem is that you get the same equation at node b!

Where does the second equation come from?

Use something like this: \(V_a = V_b + V_{S2} \)

Similar Circuit, but no \(V_{S1} \).

If the ground is already at the bottom, use the same method as above.

If you can choose your ground, you can make life a little simpler.
Basic electrical quantities
- Charge, actually moves: \(Q \)
- Current, like fluid flow: \(I = \frac{Q}{s} \)
- Voltage, like pressure: \(V \)
- Resistance: \(R = \frac{V}{I} \)
- Conductance: \(G = \frac{1}{R} \)
- Power energy/time: \(P = V \cdot I \)

Unit
- Coulomb (C)
- Amp (A, mA, µA,...)
- Volt (V, mV, kV,...)
- Ohm (Ω, kΩ, MΩ,...)
- Siemens (S, old unit mho)
- Watt (W, mW, kW, MW,...)

Schematic symbols
- Battery
- Voltage sources
- Node = All points connected by wire
- Ideal wire assume \(R=0 \)
- Ground, \(V=0 \)
- Resistor
- Capacitor
- Inductor
- Transformer
- Switch
- Diode
- LED
- Speaker
- Transformer
- Op amp

KCL, Kirchhoff's Current Law
\(I_{\text{in}} = I_{\text{out}} \) of any point, part, or section

KVL, Kirchhoff's Voltage Law
\(V_{\text{gains}} = V_{\text{drops}} \) around any loop

Node = all points connected by wire, all at same voltage (potential)

Ohm's law (resistors)
\(V = I \cdot R \)

Power
\(P_{\text{IN}} = P_{\text{OUT}} \) for resistor circuits
\(P = V \cdot I \) for everything

\(I^2 \cdot R = \frac{V^2}{R} \) for resistors

Resistors
- **series:** \(R_{\text{eq}} = R_1 + R_2 + R_3 + \ldots \)
 - Exactly the same current through each resistor
- **parallel:** \(R_{\text{eq}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots} \)
 - Exactly the same voltage across each resistor

Voltage divider:
\(V_{\text{Rn}} = V_{\text{total}} \cdot \frac{R_n}{R_1 + R_2 + R_3 + \ldots} \)

current divider:
\(I_{\text{Rn}} = I_{\text{total}} \cdot \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \ldots} \)

DC Notes

Multiple unknowns:
1. Combine resistors into equivalents where possible.
2. Use superposition if there are multiple sources and you know all the resistors.
3. Use KCL, KVL, & Ohm's laws to write multiple equations and solve.
Thévenin equivalent

To calculate a circuit’s Thévenin equivalent:
1) Remove the load and calculate the open-circuit voltage where the load used to be. This is the Thévenin voltage (V_{Th}).
2) Zero all the sources. (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Thévenin source resistance (R_{Th}).
4) Draw the Thévenin equivalent circuit and add your values.

Norton equivalent

To calculate a circuit’s Norton equivalent:
1) Replace the load with a short (a wire) and calculate the short-circuit current in this wire. This is the Norton current (I_N). Remove the short.
2) Zero all the sources. (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals. (DO NOT include the load in this resistance.) This is the Norton source resistance (R_N). (Exactly the same as the Thévenin source resistance (R_{Th})).
4) Draw the Norton equivalent circuit and add your values.

OR (the more common way)...

1) Find the Thévenin equivalent circuit.
2) Convert to Norton circuit, $R_N = R_{Th}$ and $I_N = V_{Th}/R_{Th}$.

Nodal Analysis

1) If the circuit doesn’t already have a ground, label one node as ground (zero voltage). If the ground can be defined as one side of a voltage source, that will make the following steps easier.
2) Label unknown node voltages as V_a, V_b, ...
3) Write Kirchhoff’s current equations for each unknown node.
4) Replace the currents in your KCL equations with expressions like the one below.
5) Solve the multiple equations for the multiple unknown voltages

Superposition

For circuits with **more than 1 source**.
1) Zero all but one source. (To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
2) Compute your wanted voltage or current due to the remaining source. Careful, some may be negative.
3) Repeat the first two steps for all the sources.
4) Sum all the contributions from all the sources to find the actual voltage or current. **Watch your signs!**
AC stands for Alternating Current as opposed to DC, Direct Current. AC refers to voltages and currents that change with time, usually the voltage is + sometimes and - at other times. This results in currents with go one direction when the voltage is + and the reverse direction when the voltage is -.

AC is important for two reasons. Power is created and distributed as AC. Signals are AC.

AC Power

Power is generated by rotating magnetic fields. This naturally produces sinusoidal AC waveforms.

It is easier to make AC motors than DC motors.

AC Power allows use of transformers to reduce line losses

Transformers work with AC, but not DC. Transformers can be used to raise or lower AC voltages (with an opposite change of current). This can be very useful in power distribution systems. Power is voltage times current. You can distribute the same amount of power with high voltage and low current as you can with low voltage and high current. However, the lower the voltage, the lower the I^2R loses in the wires (all real wires have some resistance). So you'd like to distribute power at the highest possible voltage. Transformers allow you to do this with AC, but won't work with DC.

Example:

Without transformers

\[
\begin{align*}
V_L &= 120\text{ V} \\
I_L &= 100\text{ A} \\
R_w &= 1\text{ Ω}
\end{align*}
\]

Wire loss: \[P_W = I_L^2 \cdot R_w = 20\text{ kW}\]

With transformers

\[
\begin{align*}
V_w &= 12\text{ kV} \\
I_w &= 1\text{ A} \\
R_w &= 1\text{ Ω} \\
V_L &= 120\text{ V} \\
I_L &= 100\text{ A}
\end{align*}
\]

In this example, the power lost in the transmission lines is only 1/10,000th what it is without transformers.

That's why they raise the voltage in transmission lines to the point where they crackle and buzz. That crackle is the sound of the losses into the surrounding air and can become significant if the voltage is too high.
Signals
A time-varying voltage or current that carries information. If it varies in time, then it has an AC component.

In some unpredictable fashion
DC is not a signal. Neither is a pure sine wave. If you can predict it, what information can it provide?
Neither DC nor pure sine wave have any "bandwidth". In fact, no periodic waveform is a signal & no periodic waveform has bandwidth. You need bandwidth to transmit information.

Signal sources
Microphone
Camera
Thermistor or other thermal sensor
Potentiometer
LVDT (Linear Variable Differential Transformer)
Light sensor
Computer
switch
etc...

Periodic waveforms: Waveshape repeats

\[T = \text{Period} = \text{repeat time} \]

\[f = \text{frequency, cycles / second} \quad f = \frac{1}{T} = \frac{\omega}{2\pi} \]

\[\omega = \text{radian frequency, radians/sec} \quad \omega = 2\pi f \]

\[A = \text{amplitude} \]

\[\text{DC} = \text{average} \]

Sinusoidal AC

\[y(t) = A \cos(\omega t + \phi) \]

voltage: \[v(t) = V_p \cos(\omega t + \phi) \]

current: \[i(t) = I_p \cos(\omega t + \phi) \]

Phase: \[\phi = -\frac{\Delta t}{T} \cdot 360\,\text{deg} \quad \text{or:} \quad \phi = -\frac{\Delta t}{T} \cdot 2\pi \,\text{rad} \]

Other common periodic waveforms

Square

Triangle

Half-Rectified Sine wave

Pulse

Sawtooth

Full-Rectified Sine wave

All but the square and triangle waves have a DC component as well as AC.
Now that we have voltages and currents which can be functions of time, it's time to introduce the capacitor and the inductor.

Electrical equivalent:

$$C = \varepsilon \frac{A}{d} = \frac{Q}{V} = \frac{dq}{dv}$$

Units: farad = coul/volt = amp·sec/volt

Basic equations you should know:

$$C = \frac{Q}{V}$$

$$i_C = C \frac{d}{dt} v_C$$

Energy stored in electric field: $$W_C = \frac{1}{2} C V^2_C$$

Capacitor voltage cannot change instantaneously

parallel: $$C_{eq} = C_1 + C_2 + C_3 + \ldots$$

series: $$C_{eq} = \frac{1}{C_1 + C_2 + C_3 + \ldots}$$

Capacitors are the only "backwards" components.

Sinusoids

$$i_C(t) = I_p \cos(\omega t)$$

$$v_C(t) = \frac{1}{C} \int i_C dt = \frac{1}{C} \frac{I_p}{\omega} \sin(\omega t)$$

Infinite integral

$$v_C(t) = \frac{1}{C} \frac{I_p}{\omega} \cos(\omega t - 90\,\text{deg})$$

Voltage "lags" current, makes sense, current has to flow in first to charge capacitor.

Steady-state or Final conditions

If a circuit has been connected for "a long time", then it has reached a steady state condition. That means the currents and voltages are no longer changing.

$$\frac{d}{dt} v_C = 0 \quad i_C = C \frac{d}{dt} v_C = 0$$

no current means it looks like an open
Example
The voltage across a 0.5 \(\mu F \) capacitor is shown below. Make an accurate drawing of the capacitor current. Label the y-axis of your graph (I've already done the time-axis).

The accuracy of your plot at 0, 2, 6, and 8 ms is important, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.

\[C := 0.5 \mu F \]

The curve is 2nd order

1 - 2ms: \[i_C = C \frac{\Delta V}{\Delta t} = 0.5 \mu F \cdot \frac{4 \text{ V}}{2 \text{ ms}} = -1 \text{ mA} \]

2ms - 6ms: Initial slope is zero and the final slope is positive, so the current must be a triangle that starts at zero and ends at some height.

\[\Delta v \bigg|_C (t) = \frac{1}{C} \int_0^t i_C (t) \, dt \]

\[8 \text{ V} = \frac{1}{C} \left(\frac{4 \text{ ms} \text{- height}}{2} \right) \]

height = \[8 \text{ V} \cdot C \cdot \frac{2}{4 \text{ ms}} = 2 \text{ mA} \]

6ms - 8ms: Slope is zero, so the current must be zero.

Basic equations you should know:

\[v_L = L \frac{d}{dt} i_L \]

Energy stored in electric field:

\[W_L = \frac{1}{2} L \cdot i_L^2 \]

Inductor current cannot change instantaneously

Units: \[\text{henry} = \text{volt} \cdot \text{sec} \div \text{amp} \]

\[mH = 10^{-3} \cdot H \quad \mu H = 10^{-6} \cdot H \]

Electrical equivalent:

\[\begin{align*}
 &\begin{array}{l}
 L = \mu_0 N^2 K \\
 \mu \text{ is the permeability of the inductor core} \\
 K \text{ is a constant which depends on the inductor geometry} \\
 N \text{ is the number of turns of wire}
 \end{array} \\
 \text{Or...} \quad &\begin{array}{l}
 i_L = \frac{1}{L} \int_{-\infty}^t v_L \, dt \\
 \text{initial current} \\
 \text{Or...} \quad &\begin{array}{l}
 i_L = \frac{1}{L} \int_0^t v_L \, dt + i_L (0) \\
 \text{Or...} \quad &\begin{array}{l}
 \Delta i_L = \frac{1}{L} \int_1^t v_L \, dt \\
 \end{array}
 \end{array}
 \end{align*} \]
series: \(L_{eq} = L_1 + L_2 + L_3 + \ldots \) \(L_1 \) \(L_2 \) \(L_3 \) \(L_4 \)

parallel: \(\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \ldots \)

Sinusoids
\[
\begin{align*}
 i_L(t) &= I_p \cos(\omega t) \\
 v_L(t) &= L \frac{di_L}{dt} = L \omega \left(I_p \sin(\omega t) \right) = L \omega I_p \cos(\omega t + 90\text{-deg}) \\
\end{align*}
\]

Voltage "leads" current, makes sense, voltage has to present to make current change, so voltage comes first.

Resonance
Series resonance
\[
\begin{align*}
 \text{looks like a short at resonance frequency} \\
\end{align*}
\]

Parallel resonance
\[
\begin{align*}
 \text{looks like an open at resonance frequency} \\
\end{align*}
\]

The resonance frequency is calculated the same way for either case:
\[
\omega_o = \frac{1}{\sqrt{L C}} \quad \text{(rad/sec)} \quad \text{OR..} \quad \omega_o = \frac{1}{\sqrt{L_{eq} C_{eq}}} \quad \text{If you have multiple capacitors or inductors which can be combined.}
\]

Steady-state of Final conditions
If a circuit has been connected for "a long time", then it has reached a steady state condition. That means the currents and voltages are no longer changing.
\[
\begin{align*}
 \frac{d}{dt} i_L &= 0 \quad \text{\(\omega_L = \frac{L}{\text{\(\omega_L I_{eq}\)} sin(\omega L t)} = 0\) } \\
 \text{no voltage means it looks like a short} \\
\end{align*}
\]

Examples
Ex 1
Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).
\[
\begin{align*}
 \omega_o &= \frac{1}{\sqrt{L_{eq} C_{eq}}} \\
 \omega_o &= 11547 \text{ rad/sec} \\
 f_o &= \frac{\omega_o}{2\pi} = 1838 \text{ Hz} \\
\end{align*}
\]
The current through a 0.3mH inductor is shown below. Make an accurate drawing of the inductor voltage. Make reasonable assumptions where necessary. Label your graph.

\(L := 0.3 \cdot \text{mH} \)

The curve is 2nd order and ends at 8\(\mu \text{s} \)

\(0 - 2\mu\text{s} \): No change in current, so: \(v_L = 0 \)

\(2\mu\text{s} - 4\mu\text{s} \): \(v_L = L \frac{\Delta i}{\Delta t} = 0.3 \cdot \text{mH} \cdot \frac{-0.6 \cdot \text{A}}{2 \mu\text{s}} = -90 \cdot \text{V} \)

\(4\mu\text{s} - 8\mu\text{s} \): Initial slope is positive and the final slope is zero, so the voltage must be a triangle that starts at some height and ends at zero.

\[\Delta i_L(t) = \frac{1}{L} \int_0^t v_L(t) \, dt \]

\[0.6 \cdot \text{A} = \frac{1}{0.3 \cdot \text{mH}} \left(\frac{4 \mu\text{s} - \text{height}}{2} \right) \]

\[\text{height} = 0.6 \cdot \text{A} \cdot \frac{0.3 \cdot \text{mH} \cdot 2 \mu\text{s}}{4 \mu\text{s}} = 90 \cdot \text{V} \]

\(8\mu\text{s} - 10\mu\text{s} \): No change in current, so: \(v_L = 0 \)

Ex 3 Given a voltage, find the current, \(L := 4 \cdot \text{mH} \)

\[\Delta i_L(t) = \frac{1}{L} \int_{2\mu\text{s}}^{4\mu\text{s}} 20 \cdot \text{V} \, dt = 5 \cdot \text{mA} \]

\[\frac{1}{L} \int_{4\mu\text{s}}^{8\mu\text{s}} -10 \cdot \text{V} \, dt = -5 \cdot \text{mA} \]

\[\frac{1}{L} \int_{8\mu\text{s}}^{10\mu\text{s}} V(t) \, dt = -5 \cdot \text{mA} \]

\[= \frac{1}{L} \left(\frac{20 \cdot \text{V} \cdot 2\mu\text{s}}{2} - 5 \cdot \text{mA} \right) = 0 \cdot \text{mA} \]

Ex 4 The following circuit has been connected as shown for a long time. Find the energy stored in the capacitor and the inductor.

\[\text{Redraw:} \]

\[V_{S} = 30 \cdot \text{V} \]

\[R_1 = 4 \cdot \Omega \]

\[R_2 = 8 \cdot \Omega \]

\[R_3 = 36 \cdot \Omega \]

\[C = 40 \cdot \mu\text{F} \]

\[L = 25 \cdot \text{mH} \]

\[V_S = 30 \cdot \text{V} \]

\[\frac{V_S}{R_1 + R_3} \]

\[I_L = 0.75 \cdot \text{A} \]

\[W_L = \frac{1}{2} L I_L^2 \]

\[W_L = 7.031 \cdot \text{mJ} \]

\[V_C = 27 \cdot \text{V} \]

\[W_C = \frac{1}{2} C \cdot V_C^2 \]

\[W_C = 14.58 \cdot \text{mJ} \]
Capacitors

\[C = \frac{Q}{V} \text{ farad} = \frac{\text{coul}}{\text{volt}} = \frac{\text{amp-sec}}{\text{volt}} \]

\[v_C = \int_{t_0}^{t} i_C \, dt = \int_{t_0}^{t} \frac{v_C(0)}{C} + \frac{v_C(t)}{C} \, dt \]

Energy stored in electric field:

\[W_C = \frac{1}{2} C \cdot v_C^2 \]

parallel: \[C_{eq} = C_1 + C_2 + C_3 + \ldots \]

series: \[C_{eq} = \frac{1}{C_1 + \frac{1}{C_2} + \frac{1}{C_3} + \ldots} \]

Capacitor voltage cannot change instantaneously

Inductors

\[i_L = \frac{1}{L} \int_{-\infty}^{t} v_L \, dt = \frac{1}{L} \int_{0}^{t} v_L \, dt + i_L(0) \]

Energy stored in magnetic field:

\[W_L = \frac{1}{2} L \cdot i_L^2 \]

parallel: \[L_{eq} = \frac{1}{L_1 + L_2 + L_3 + \ldots} \]

series: \[L_{eq} = L_1 + L_2 + L_3 + \ldots \]

Inductor current cannot change instantaneously

Steady-state sinusoids:

Capacitor voltage:

\[v_C(\infty) = v_C(0) \cdot e^{-\frac{t}{\tau}} \]

\[i_X(t) = i_X(\infty) + \left(i_X(0) - i_X(\infty) \right) \cdot e^{-\frac{t}{\tau}} \]

RC and RL first-order transient circuits

RC Time constant = \(R \cdot C \)

RL Time constant = \(L \cdot R \)

Find initial Conditions \((v_C \text{ and/or } i_L)\)

Find conditions just before time \(t = 0 \), \(v_C(0-) \) and \(i_L(0-) \). These will be the same just after time \(t = 0 \), \(v_C(0+) \) and \(i_L(0+) \) and will be your initial conditions. (If initial conditions are zero: Capacitors are shorts, Inductors are opens.)

Use normal circuit analysis to find your desired variable:

\[v_X(0) \text{ or } i_X(0) \]

Find final conditions ("steady-state" or "forced" solution)

Inductors are shorts Capacitors are opens Solve by DC analysis \[v_X(\infty) \text{ or } i_X(\infty) \]

Curves

\[v_C(t) \]

\[i(t)R = v_R(t) \]

Typical discharging

\[v_L(t) \]

\[i(t)R = v_R(t) \]

Typical increasing field

\[i(t)R = v_R(t) \]

Typical decreasing field

Typical increasing field

RC Curves

RL Curves

\(e^{-1} = 0.368 \)

\(1 - e^{-1} = 0.632 \)
1.1 Introduction

Transient: A transient is a transition from one state to another. If the voltages and currents in a circuit do not change with time, we call that a "steady state". In fact, as long as the voltages and currents are steady AC sinusoidal values, we can call that a steady state as well. Up until now we've only discussed circuits in a single steady state. But what happens when the state of a circuit changes, say from "off" to "on"? Can the state of the circuit change instantaneously? No, nothing ever changes instantaneously; the circuit state will go through some transition from the initial state, "off" to the final state, "on" and that change will take some amount of time. The same is true in mechanical systems. If you want to change the velocity of a mass or the level of fluid in a tank or the temperature of your coffee, that transition from one state to another will take some time.

The drawings on this page show some typical transients that can occur when a circuit is first turned on. The initial state of all the waveforms is 0. The final state is either 1 or a sine wave with an amplitude of 1. Notice that in all four cases the transient effects decay exponentially and that all four waveforms have pretty nearly reached their steady-state values by the end of the graph.

Transient analysis: Needless to say, the analysis of these transients is a bit more involved than the steady state. In fact, it usually involves two steady state analyses just to find the initial and final states of the circuit, and then you still need to figure out what happens in between.

Transients are not instant because capacitors and inductors in the circuit store energy, and moving the energy into or out of these parts takes some time. The voltage-current relationships of capacitors and inductors are differential equations, so transient analysis will involve solving differential equations. But don't panic, you'll learn some nice tricks and techniques for dealing with these equations — tricks and techniques that you can use in any engineering field, not just EE. Actually, all that phasor stuff you used with AC circuits was also a trick to simplify the differential equations, unfortunately, that trick only works for sinusoids in steady state.

DC circuits with only resistors also experience transients, but these are due to non-ideal capacitance and inductance of the parts and wires that we haven't considered before. These transients happen so fast that we won't worry about them.
Importance: So why are transients important? Two reasons really. DC and steady-state AC are fine for moving and using electrical power, but sometimes you need to turn them on and off and you may need to know what happens at those times. That need turns out to be relatively rare and probably couldn’t justify the time we’ll spend studying transients. It’s signals processing and control systems really drive our study of transients.

Signals are electrical voltages and currents that carry information. The information could be audio or video or the information might be about the position or speed of mechanical parts, or about the temperature or level of fluids or chemicals or practically anything you can imagine. To carry information signals have to change in some way that we can’t predict and we’ll need to have some idea how a circuit will respond to those changes. Changes are transients. However, since these changes can’t be known beforehand we usually find a circuit’s response to specific types of inputs and then draw conclusions about the effectiveness or stability in the general case. Often the electrical circuit is just one part of a larger system that may include mechanical, hydraulic, or thermal systems. See box.

1.2 First-order transients

Analysis of a circuit with only one capacitor or one inductor results in a first-order differential equation and the transients are called first-order transients.

Series RC circuit, traditional way: Look at the circuit at right. It shows a capacitor and a resistor connected to a voltage source by way of a switch that is closed at time $t=0$. Before the switch is closed the current $i(t)$ and the voltage v_R are both 0, but the voltage v_C is unknown. Remember a capacitor is capable of storing a charge, so we don’t know what its charge might be unless we or can measure it or it is given. I’ll call it the initial voltage ($v_C(0)$). Because the voltage across a capacitor cannot change instantaneously, the voltage across the capacitor just after the switch closes must be the same as it was just before the switch closes.

Now we just have to apply the basic circuit laws

$$ V_{in} = v_R + v_C \quad i - R + v_C = C \frac{d}{dt} i_C \quad \int_{0}^{t} i_C dt $$

Making the obvious substitution.

The next step here would be to differential both sides of the equation, but if you’re a little more clever, there’s an easier way, check this out:

Make this substitution instead $i = i_C = C \frac{d}{dt} v_C$, to get $V_{in} = R C \frac{d}{dt} v_C + v_C$.

Waa-laa, no integration. Always try to write your differential equations without integrals, it will eliminate one more source of mistakes. We now have a differential equation in terms of v_C. If v_C isn’t the variable we want to find in our analysis then we can always go back to the circuit later and find the current or the voltage v_R by simple circuit analysis after we’ve found v_C.

Printer Design

Let’s think about some of the transients and signals involved with moving a print head and putting ink on a page of paper.

First, there’s the mechanical system to move the print head. How quickly does the movement respond to an electrical signal sent to the motor? How powerful do those signals have to be? Does it have a natural frequency where it might vibrate or oscillate? These are all questions for the transient analysis of the mechanical system.

The electrical circuit would take a signal from some sensor that indicates the position of the print head and, using other information about where the next character should be printed, send the right signals to the motor. You’d use transient analysis to make sure that it could handle any combination of inputs without overshooting the position or oscillating or going too slowly. Besides this, the electrical system may have to compensate for properties of the mechanical system.

Finally, there’s the system that actually puts the ink on the paper, let’s say it’s an ink jet. Transient considerations here would include the time it takes for the print head to heat the ink to the point where it spits a bubble and how that should all be timed with the head movement to place that bubble on the paper at just the right place.
So now we have to solve the differential equation. Recall from your differential equations class that the first order differential equations are always solved by equations of the following form.

Standard first order differential equation answer:
\[v_C(t) = A + B \cdot e^{s \cdot t} \]

And, by differentiation:
\[\frac{dv}{dt} = B \cdot s \cdot e^{s \cdot t} \]

Substitute these back into the original equation:
\[V_{in} = R \cdot C \cdot \frac{dv}{dt} + v_C = R \cdot C \cdot B \cdot s \cdot e^{s \cdot t} + \left(A + B \cdot e^{s \cdot t} \right) = R \cdot C \cdot B \cdot s \cdot e^{s \cdot t} + B \cdot e^{s \cdot t} + A \]

We can separate this equation into two parts, one which is time dependent and one which is not. Each part must still be an equation.

Time independent (forced) part:
\[V_{in} = A, \quad A = V_{in} = \text{final condition} = v_C(\infty) \]

Time dependent (transient) part:
\[0 = R \cdot C \cdot B \cdot s \cdot e^{s \cdot t} + B \cdot e^{s \cdot t}, \]

Divide both sides by \(B \cdot e^{s \cdot t} \) to get
\[0 = R \cdot C \cdot s + 1, \quad s = \frac{1}{R \cdot C} = \frac{1}{\tau}, \quad \text{where} \quad \tau = R \cdot C \]

This \(\tau \) is called the "time constant" and will become a rather important little character.

Put the parts we know back into the expression for \(v_C(t) \):
\[v_C(t) = V_{in} + B \cdot e^{s \cdot t} - \frac{1}{R \cdot C} \cdot v_C(\infty) + B \cdot e^{s \cdot t} \]

at time \(t = 0 \):
\[v_C(0) = V_{in} + B \cdot e^{s \cdot 0} - \frac{1}{R \cdot C} \cdot v_C(\infty) + B \cdot e^{s \cdot 0} = V_{in} + B \cdot v_C(0) - V_{in} = v_C(0) - v_C(\infty) \]

\(B \) is the difference between \(v_C \) at the start and \(v_C \) at the end.

And finally:
\[v_C(t) = V_{in} + B \cdot e^{s \cdot t} - \frac{1}{R \cdot C} \cdot v_C(\infty) + B \cdot e^{s \cdot t} \cdot \left(v_C(0) - v_C(\infty) \right) \cdot e^{-t \cdot \frac{1}{R \cdot C}} \]

It turns out that all first-order transient solutions will have the same form, just different variables and time constants.

Once you have \(v_C(t) \), you can also find \(v_R(t) \) and/or \(i(t) \) from \(v_C(t) \) if you want.

\[v_R(t) = V_{in} + v_C(t) = V_{in} - \left(B \cdot e^{s \cdot t} + V_{in} \right) = -B \cdot e^{s \cdot t} = -B \cdot e^{-t / \tau} = \frac{v_C(0) - v_C(\infty)}{R} \cdot e^{-t / R \cdot C} \]

\[i(t) = C \cdot \frac{dv}{dt} = C \cdot B \cdot e^{s \cdot t} - \frac{1}{R \cdot C} \cdot e^{-t / R \cdot C} = \frac{B \cdot e^{-t / \tau}}{R} = \frac{v_C(0) - v_C(\infty)}{R} \cdot e^{-t / R \cdot C} \]

Let’s plot these and see what they actually look like. These graphs show the capacitor charging from its initial value to \(V_{in} \) and \(v_R \) falling to 0 (same for \(i_R \)).

The curves are generalized based on the concept of the time constant, which is why we introduced the time constant. Later we’ll look at these kind of curves in greater detail.

Ok, that was fun, but you might ask at this point if there isn’t an easier way. Yes, in fact, there is. We’ll look at next.
First-Order Transients the Easy Way

Notice in the preceeding analysis that I made a very standard guess at the solution of the differential equation.

Standard first order differential equation answer: \(v_C(t) = A + Be^{-st}\)

Further notice that A turned out to be the final condition and that B turned out to be the difference between the initial and final conditions. Finally, remember that I renamed \(s\) to \(-1/\tau\). All of this can be generalized to any first order system. The answer will always be in this form:

\[
\frac{\text{final condition}}{\text{initial condition}} \cdot e^{-st}
\]

For all first order transients:

\[
x(t) = x(\infty) + (x(0) - x(\infty)) \cdot e^{-st}
\]

You find Initial and final conditions from steady-state analysis. That leaves only one thing that you have to find from the differential equation-- the time constant. If we could only figure out what the time constant of a circuit (or system) is, then we could almost jump straight to the solution.

The first way to find the time constant is to simply remember it's form for a few cases, like the for RC circuit. Even if the circuit doesn't look exactly like the standard RC series circuit, Thevenin can help us make it look that way. Since nearly all of our first order circuits will involve a single capacitor or a single inductor this is not an impractical method at all.

Another way to find the time constant is to manipulate the differential equation into this particular form

\[
\text{constant} = X + \tau \frac{dX}{dt}
\]

with no factor in front of the "X" term. Whatever the factor in front of \(\frac{dX}{dt}\) turns out to be, that will be \(\tau\). For the RC circuit the differential equation could be written as

\[
V_{in} = RC_\frac{d}{dt}v_C + v_C
\]

notice that the factor in front of \(\frac{d}{dt}v_C\) is indeed \(\tau\).

Finally, there is an even easier way based on the LaPlace "s" and s-impedances that we can use in circuits and equations in place of differentials and integrals. You'll see this last method later, after second-order transients. (Incidentally, this is the reason that I chose to use an \(s\) as the unknown in the exponential.)

Series RL circuit: OK, if it's so easy, let's try it with a series RL circuit.

\[
V_{in} = v_R + v_L
\]

\[
V_{in} = i \cdot R + L \frac{d}{dt}i
\]

\[
\frac{V_{in}}{R} = i + \frac{L}{R} \frac{d}{dt}i
\]

So, the time constant must be \(\tau = \frac{L}{R}\). That wasn't too bad.

Initial condition: \(i_L(0) = 0\) If the switch was initially open the the current just before the switch was closed was 0, and inductor current can't change instantly.

Final condition: \(i_L(\infty) = \frac{V_{in}}{R}\) The inductor looks like an short for steady-state DC.

So:

\[
i_L(t) = i_L(\infty) + (i_L(0) - i_L(\infty)) \cdot e^{-\frac{t}{\tau}} = \frac{V_{in}}{R} + \left(\frac{V_{in}}{R} - \frac{V_{in}}{R} \right) \cdot e^{-\frac{t}{\tau}} = \frac{V_{in}}{R} \left(1 - e^{-\frac{R}{L}t} \right)
\]

Well, that's wasn't too painful, was it?
1.3 Initial and Final Conditions

More than once I've said that the initial and final conditions are found from steady-state analysis of the circuit. It's about time I said how.

Initial Conditions: There are two very important concepts that you use to find the initial conditions.

1) Capacitor voltage cannot change instantaneously, \(v_C(0+) = v_C(0-) \).

- If you can find the capacitor voltage just before time \(t = 0 \) (or whatever starts the transient), then you know what it is just after time \(t = 0 \), \(v_C(0+) = v_C(0-) \). It cannot change instantaneously. Often you'll use the methods outlined below to find the final condition of the previous circuit, especially if the circuit's been in that condition for "a long time". Sometimes you'll have to solve the previous transient to find the initial condition for the next transient.

- If you cannot find the capacitor voltage just before time \(t = 0 \) from the circuit, then you'll have to be told what the initial voltage or charge is. Capacitors can hold a charge for a long time, and can be moved from one circuit to another without losing the charge. High school electronics students like to charge capacitors and leave them where they'll shock some poor unsuspecting soul. Of course you'd never do something as childish as that. Occasionally you may be told what the initial charge is in terms of coulombs. In that case remember the definition of capacitance.

\[
C = \frac{Q}{V} \quad \text{which can be rearranged to} \quad V = \frac{Q}{C}
\]

If you have nothing else to go on, assume the initial voltage is 0.

2) Inductor current cannot change instantaneously, \(i_L(0+) = i_L(0-) \).

- If you can find the inductor current just before time \(t = 0 \) (or whatever starts the transient), then you know what it is just after time \(t = 0 \), \(i_L(0+) = i_L(0-) \). It cannot change instantaneously.

- If you cannot find the inductor current just before time \(t = 0 \) from the circuit, then assume it's 0. Real circuits and real inductors always have some resistance so inductor currents just don't last very long (unless you're dealing with superconductors). Inductors would be very difficult to move from one circuit to another without losing the current. If you're given an initial current for a problem, realize that this is probably just to make the problem more interesting, or the initial current comes from previous analysis.

Do not mix these two concepts up. Capacitor current and inductor voltage can both change instantly with no problem at all.

Final Conditions: This is steady-state analysis. The steady-state is the final condition.

DC sources

If all the voltage and current sources are DC, then at the final condition the capacitors are all done done charging so \(i_C = 0 \), and you can treat them as open circuits. When you find the voltage across the open, that will be the final capacitor voltage. You've done this sort of thing before to find the energy stored in a capacitor.

At the final condition the inductor currents are also no longer changing, so the voltage across an inductor is 0. Treat inductors as wires (short circuits). When you find the current through the wire, that will be the final inductor current.

AC sources

Use phasor analysis \((j\omega)\). Remember that phasor analysis was also called "steady-state AC". One of the primary assumptions was that the transients had all died out.
1.4 Exponential Curves

Before we go on to second-order transients we should take a closer look at some of the characteristics of exponential curves. The curves that show up as answers to our transient problems are shown below. The transient effects always die out after some time, so the exponents are always negative. Just think about what a positive exponent would mean. That wouldn't be a transient-- that would be exponential growth, like the population.

Some important features:
1) These curves proceed from an initial condition to a final condition. If the final condition is greater than the initial, then the curve is said to be a "rising" exponential. If the final condition is less than the initial, then the curve is called a "decaying" exponential.

2) The curves' initial slope is $+\frac{1}{\tau}$. If they continued at this initial slope they'd be done in one time constant.

3) In the first time constant the curve goes 63% from initial to the final condition.

4) After three time constants the curve is 95% of the way to the final condition.

5) By five time constants the curve is within 1% of the final condition and is usually considered finished. Mathematically, the curve approaches the final condition asymptotically and never reaches it. In reality, of course, this is nonsense. Whatever difference there may be between the mathematical solution and the final condition will soon be overshadowed by random fluctuations (called noise) in the real circuit.

Transients p. 1.6
Ex1 a) Find the expression for $v_c(t)$ if the switch is closed at time $t = 0$ and $v_c(0) = 0$.

$$v_c(t) = v_c(\infty) + \left(v_c(0) - v_c(\infty)\right)e^{-\frac{t}{\tau}}$$

redraw to find $v_c(\infty)$

$$v_c(\infty) = 9.0 \ V$$

$$v_c(t) = 9.0 + (0.9 - 9.0)e^{-\frac{t}{60 \ \mu s}}$$

b) What is the voltage across the capacitor, C, at $t = 0.1 ms$?

$$v_c(0.1 \ \mu s) = 9.0 - 9.0e^{-\frac{0.1}{60 \ \mu s}} = 7.3 \ V$$

c) When will the current through the resistor be $i_R = 5 mA$?

$$i_R(\infty) = 0 \ mA$$

$$i_R(0) = \frac{9.0}{600} = 15 mA$$

found from drawing

$$i_R(t) = i_R(\infty) + \left(i_R(0) - i_R(\infty)\right)e^{-\frac{t}{\tau}}$$

$$i_R(t) = 0 + (15.0 - 0.0)e^{-\frac{t}{60 \ \mu s}}$$

$$i_R(t) = 10.976mAe^{-\frac{t}{60 \ \mu s}} = 5 mA \ at \ some \ time, \ t$$

Solve for $t = -\tau \ln \left(\frac{5 \ mA}{15.0 \ mA}\right) = 65.92 \ \mu s$

d) When will the current through the resistor be $i_R = 20 mA$?

Since the initial condition is about 15mA and the final condition is 0mA, i_R will never be 20mA.

Ex2 A 1000 μF capacitor has an initial charge of 12 volts. A 20-Ω resistor is connected across the capacitor at time $t = 0$. Find the energy dissipated by the resistor in the first 5 time constants.

After 5 time constants nearly all of the energy initially stored in the capacitor will be dissipated by the resistor.

$$C := 1000 \ \mu F \quad V_C := 12 \ V \quad W_C := \frac{1}{2}C \cdot V_C^2 \quad W_C = 0.072 \ \text{joule}$$

You can get to this answer just by knowing a little about the exponential curve, but what if you want a more accurate answer? Then you'll have to find the remaining voltage across the capacitor at $t = 5t$ and subtract the energy left in the capacitor at that time.

$$v_C(0) = 12 \ V \quad v_C(\infty) = 0 \ V \quad v_C(t) = v_C(\infty) + \left(v_C(0) - v_C(\infty)\right)e^{-\frac{t}{\tau}} = 0 + (12 - 0)e^{-\frac{t}{60 \ \mu s}} = 12e^{-\frac{t}{60 \ \mu s}}$$

at $t = 5t$: $v_C(5-t) = 12e^{-\frac{5t}{60 \ \mu s}} = 81 \ mA$

$$W_R = W_C - \frac{1}{2}C \cdot (81 \ mA)^2 = 3.28 \times 10^{-6} \ \text{joule}$$

Not surprisingly, this makes no significant difference.
The capacitor is initially uncharged. The switch is in the upper position from 0 to 2ms and is switched down at time \(t = 2\text{ms} \).

a) What is the capacitor voltage, \(v_C(t) \)?

First interval

\[
v_C(0) = 0 \text{ V}
\]

\[
v_C(\infty) = 24 \text{ V}
\]

\[
v_C(t) = v_C(\infty) + (v_C(0) - v_C(\infty)) \cdot e^{-\frac{t}{\tau}} = 24 \text{ V} + (0 \text{ V} - 24 \text{ V}) \cdot e^{-\frac{t}{1.08 \text{ ms}}}
\]

at \(t = 2\text{ms} \):

\[
v_C(2\text{ms}) = 24 \text{ V} - 24 \text{ V} \cdot e^{-\frac{2\text{ms}}{1.08 \text{ ms}}} = 20.23 \text{ V}
\]

Second interval, define a new time, \(t' = t - 2\text{ms} \)

\[
v_C(t') = v_C(\infty) + (v_C(0) - v_C(\infty)) \cdot e^{-\frac{t'}{\tau'}} = 10 \text{ V} + (20.23 \text{ V} - 10 \text{ V}) \cdot e^{-\frac{t'}{0.96 \text{ ms}}} = 10 \text{ V} + 10.23 \text{ V} \cdot e^{-\frac{t'}{0.96 \text{ ms}}}
\]

\[
0 < t < 2\text{ms}
\]

\[
V_C(t) = 24 \text{ V} - 24 \text{ V} \cdot e^{-\frac{t}{1.08 \text{ ms}}}
\]

\[
t > 2\text{ms}
\]

\[
V_C(t) = 10 \text{ V} + 10.23 \text{ V} \cdot e^{-\frac{t - 2\text{ms}}{0.96 \text{ ms}}}
\]

b) When is voltage across the capacitor 12V AND getting smaller?

\[
12 \text{ V} = 10 \text{ V} + 10.233 \text{ V} \cdot e^{-\frac{t}{0.96 \text{ ms}}}
\]

\[
\frac{12 \text{ V} - 10 \text{ V}}{10.23 \text{ V}} = e^{-\frac{t}{0.96 \text{ ms}}}
\]

\[
\ln\left(\frac{12 \text{ V} - 10 \text{ V}}{10.23 \text{ V}}\right) = -\frac{t}{0.96 \text{ ms}}
\]

\[
t_{12} = -0.96 \text{ ms} \ln\left(\frac{12 \text{ V} - 10 \text{ V}}{10.23 \text{ V}}\right) = 1.57 \text{ ms}
\]

\[
2\text{ms} + 1.57 \text{ ms} = 3.57 \text{ ms}
\]
Ex4 a) Find the complete expression for \(i_L(t) \).

Before the switch closes, \(t = 0^- \)

\[
\begin{align*}
R_{Th} &= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} + R_3 \\
R_{Th} &= 30 \cdot \Omega
\end{align*}
\]

\[i_L(t) = i_L(\infty) + \left(i_L(0) - i_L(\infty) \right) \cdot e^{-t/\tau} = 375 \cdot mA + (0 \cdot mA - 375 \cdot mA) \cdot e^{-t/100 \mu s} = 375 \cdot mA - 375 \cdot mA \cdot e^{-t/100 \mu s}\]

Final time, \(t = \infty \)

\[v_{R3}(\infty) = \frac{R_2}{R_1 + R_2 + R_3} \cdot V_{in} = 5.625 \cdot V
\]

\[i_L(\infty) = \frac{v_{R3}(\infty)}{R_3} = \frac{5.625 \cdot V}{15 \cdot \Omega} = 375 \cdot mA
\]

\[v_{R2}(0) = \frac{R_2}{R_1 + R_2} \cdot V_{in} = 11.25 \cdot V
\]

b) When is the voltage across \(R_2 = 10V \) ?

Before the switch closes, \(t = 0^- \)

\[v_{R2}(\infty) = v_{R3}(\infty) = \frac{R_2}{R_1 + R_2 + R_3} \cdot V_{in} = 5.625 \cdot V
\]

\[v_{R2}(t) = v_{R2}(\infty) + \left(v_{R2}(0) - v_{R2}(\infty) \right) \cdot e^{-t/\tau} = 5.625 \cdot V + (11.25 \cdot V - 5.625 \cdot V) \cdot e^{-t/100 \mu s} = 10 \cdot V \text{ at some time, solving for that time...}
\]

\[t = -\tau \ln\left(\frac{10 \cdot V - 5.625 \cdot V}{11.25 \cdot V - 5.625 \cdot V}\right) = 25 \mu s
\]

Alternatively, when \(v_{R2}(t) = 10V \), then \(v_{R1}(t) = 5V \) and \(i_L(t) = \frac{5 \cdot V}{R_1} - \frac{10 \cdot V}{R_2} = 83.333 \cdot mA
\]

\[t = -\tau \ln\left(\frac{83.333 \cdot mA - 375 \cdot mA}{-375 \cdot mA}\right) = 25 \mu s
\]

c) What is the \(v_L(t) \) expression?

\[v_L(t) = v_L(\infty) + \left(v_L(0) - v_L(\infty) \right) \cdot e^{-t/\tau} = 0 \cdot V + (11.25 \cdot V - 0 \cdot V) \cdot e^{-t/100 \mu s}
\]
Ex5 The switch has been closed for a long time and is opened (as shown) at time \(t = 0 \).

a) Find the complete expression for \(i_L(t) \).

Before the switch opens, \(t = 0^- \):

\[
\begin{align*}
I_S &= 180 \text{ mA} \\
R_1 &= 200 \Omega \\
R_2 &= 60 \Omega \\
L &= 20 \text{ mH} \\
R_3 &= 120 \Omega
\end{align*}
\]

\[
\begin{align*}
i_L(0) &= I_S \left(\frac{1}{R_3} + \frac{1}{R_1} + \frac{1}{R_2} \right) = 50 \text{ mA}
\end{align*}
\]

Final time, \(t = \infty \):

\[
\begin{align*}
i_L(\infty) &= I_S \left(\frac{1}{R_3} \right) = 112.5 \text{ mA}
\end{align*}
\]

\[
\begin{align*}
&
i_L(t) = i_L(\infty) + \left(i_L(0) - i_L(\infty) \right) e^{-\frac{t}{\tau}} \\
&= 112.5 \text{ mA} + (50 \text{ mA} - 112.5 \text{ mA}) e^{-\frac{t}{\tau}} \\
&= 112.5 \text{ mA} - 62.5 \text{ mA} e^{-\frac{t}{120.4 \mu s}}
\end{align*}
\]

b) Find \(i_L \) at time \(t = 1.4 \tau \).

\[
i_L(1.4 \tau) = 112.5 \text{ mA} - 62.5 \text{ mA} e^{-\frac{1.4}{120.4 \mu s}} = 112.5 \text{ mA} - 62.5 \text{ mA} e^{-1.4} = 97.088 \text{ mA}
\]

c) At time \(t = 1.4 \tau \) the switch is closed again. Find the complete expression for \(i_L(t') \), where \(t' \) starts at \(t = 1.4 \tau \).

Be sure to clearly show the time constant.

\[
\begin{align*}
&
i_L(0) = 97.1 \text{ mA} \text{ from part b)} \\
&i_L(\infty) = 50 \text{ mA} \text{ initial value from part a)} \\
&i_L(t) = i_L(\infty) + \left(i_L(0) - i_L(\infty) \right) e^{-\frac{t}{\tau}} \\
&= 50 \text{ mA} + (97.1 \text{ mA} - 50 \text{ mA}) e^{-\frac{t}{120.4 \mu s}} \\
&= 50 \text{ mA} + 47.1 \text{ mA} e^{-\frac{t}{120.4 \mu s}}
\end{align*}
\]

ECE 2210 First-Order Transient Examples, p4
Complex Numbers

Rectangular Form
\[A = a + b \cdot j \]
\[\text{Re}(A) = a \quad \text{Im}(A) = b \]

Polar Form
\[A = A \cdot e^{j\theta} \]
\[\text{Re}(A) = A \cdot \cos(\theta) \quad \text{Im}(A) = A \cdot \sin(\theta) \]

Conversions
\[A = |A| = \sqrt{a^2 + b^2} \quad \theta = \text{arg}(A) = \tan^{-1}\left(\frac{b}{a}\right) \]
\[a = A \cdot \cos(\theta) \quad b = A \cdot \sin(\theta) \]
\[A = A \cdot e^{j\theta} = A \cdot \cos(\theta) + A \cdot \sin(\theta) \cdot j \]
\[A = a + b \cdot j = \left(\sqrt{a^2 + b^2}\right) \cdot e^{j \tan^{-1}\left(\frac{b}{a}\right)} \]

Special Cases
\[j = \sqrt{-1} = e^{j90\text{deg}} \quad \frac{1}{j} = e^{-j90\text{deg}} \quad e^{j0\text{deg}} = 1 \]
\[e^{j180\text{deg}} = -1 \]
\[j \cdot e^{j\theta} = e^{j(\theta + 90\text{deg})} \]

Define a 2\text{nd} number: rect: \[D = c + d \cdot j \quad \text{polar: } D = D \cdot e^{j\theta} \]

Equality
\[A = D \quad \text{if and only if} \quad a = c \quad \text{and} \quad b = d \quad \text{OR} \quad A = D \quad \text{and} \quad \theta = \phi \]

Addition and Subtraction
\[A + D = (a + b \cdot j) + (c + d \cdot j) = (a + c) + (b + d) \cdot j \]
\[A - D = (a + b \cdot j) - (c + d \cdot j) = (a - c) + (b - d) \cdot j \]

Conversion to rectangular form first

Multiplication and Division
\[A \cdot D = (a + b \cdot j) \cdot (c + d \cdot j) = (a \cdot c - b \cdot d) + (b \cdot c + a \cdot d) \cdot j \]
Rectangular:
\[A = \frac{a + b \cdot j}{c + d \cdot j} \]
\[D = \frac{a - b \cdot j}{c - d \cdot j} \]
\[A = \frac{a + b + j \cdot c - d \cdot j}{c + d \cdot j} \]
\[D = \frac{a - b - j \cdot c + d \cdot j}{c - d \cdot j} \]

Polar:
\[A \cdot D = A \cdot e^{j\theta} \cdot D \cdot e^{j\phi} = A \cdot D \cdot e^{j(\theta + \phi)} \]
\[\frac{A}{D} = \frac{A \cdot e^{j\theta}}{D \cdot e^{j\phi}} = A \cdot e^{j(\theta - \phi)} \]

Powers
\[A^n = A^n \cdot e^{jn\theta} = A^n \cdot \cos(n\theta) + A^n \cdot \sin(n\theta) \cdot j \]

Convert rectangulars first, usually

Conjugates
\[\text{complex number} \quad \overline{A} = a - b \cdot j \]
\[A = A \cdot e^{j\theta} \]
\[F = \frac{3 + 5 \cdot j}{(2 - 6 \cdot j) \cdot e^{j40\text{deg}}} \]
\[\overline{F} = \frac{3 - 5 \cdot j}{(2 + 6 \cdot j) \cdot e^{-j40\text{deg}}} \]

Euler's equation
\[e^{j\alpha} = \cos(\alpha) + j \cdot \sin(\alpha) \quad \text{OR: } \cos(\alpha) = \frac{e^{j\alpha} + e^{-j\alpha}}{2} \quad \sin(\alpha) = \frac{e^{j\alpha} - e^{-j\alpha}}{2j} \]
\[e^{j(\omega t + \theta)} = \cos(\omega t + \theta) + j \cdot \sin(\omega t + \theta) \]
\[\text{Re}\left[e^{j(\omega t + \theta)}\right] = \cos(\omega t + \theta) \]

If we freeze this at time t=0, then we can represent \[\cos(\omega t + \theta) \] by \[e^{j\theta} \]

Calculus
\[\frac{d}{dt} A = j \cdot \omega \cdot A \cdot e^{j\theta} = \omega \cdot A \cdot e^{j(\theta + 90\text{deg})} \]
\[\int A \cdot dt = \int A \cdot e^{j\theta} \cdot dt = \frac{1}{j \cdot \omega} \cdot A \cdot e^{j\theta} = \frac{1}{\omega} \cdot A \cdot e^{j(\theta - 90\text{deg})} \]

ECE 2210 / 00 Complex Numbers Notes
Phasor analysis with impedances, For steady-state sinusoidal response ONLY

Sinusoidal AC

\[T = \text{Period} = \text{repeat time} \]
\[f = \text{frequency, cycles} / \text{second} \quad f = \frac{1}{T} = \frac{\omega}{2\pi} \]
\[\omega = \text{radian frequency, radians/sec} \quad \omega = 2\pi f \]
\[A = \text{amplitude} \]

Phase:
\[\phi = \frac{\Delta t}{T} \cdot 360 \text{-deg} \]
\[\text{or:} \quad \phi = \frac{\Delta t}{T} \cdot 2\pi \text{-rad} \]
\[y(t) = A \cdot \cos(\omega t + \phi) \]

Phasor analysis

The math is all based on the Euler’s equation

Euler's equation
\[e^{j\alpha} = \cos(\alpha) + j \cdot \sin(\alpha) \]

\[\cos(\alpha) = \frac{e^{j\alpha} + e^{-j\alpha}}{2} \]
\[\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \]

If we freeze this at time \(t=0 \), then we can represent \(\cos(\omega t + \theta) \) by \(e^{j\theta} \). That's the phasor.

Phasor

Voltage: \(v(t) = V_p \cdot \cos(\omega t + \phi) \)
\[V(\omega) = V_p \cdot e^{j\phi} \]

Current: \(i(t) = I_p \cdot \cos(\omega t + \phi) \)
\[I(\omega) = I_p e^{j\phi} \]

Phasors are used for adding and subtracting sinusoidal waveforms.

Ex1. Add the sinusoidal voltages

\[v_1(t) = 4.5 \cdot V \cdot \cos(\omega t - 30 \text{-deg}) \]
\[v_2(t) = 3.2 \cdot V \cdot \cos(\omega t + 15 \text{-deg}) \]

Using phasor notation, draw a phasor diagram of the three phasors, then convert back to time domain form.

\[V_1(\omega) = 4.5V \cdot /-30^\circ \quad \text{or:} \quad V_1(\omega) = 4.5V \cdot e^{j-30^\circ} \]

And
\[V_2(\omega) = 3.2V \cdot /15^\circ \quad \text{or:} \quad V_2(\omega) = 3.2V \cdot e^{j15^\circ} \]

I'm going to drop the \((\omega) \) notation from the phasor notation, it gets cumbersome, but remember that phasors are in the frequency domain.

\[V_1 = 4.5V \cdot /-30^\circ \quad \text{or:} \quad V_1 := 4.5V \cdot e^{-j30^\circ} \]
\[V_2 = 3.2V \cdot /15^\circ \quad \text{or:} \quad V_2 := 3.2V \cdot e^{j15^\circ} \]
Add like vectors, first change to the rectangular form

\[V_1 = 4.5 \angle -30^\circ \]
\[4.5 \cdot \cos(-30^\circ) = 3.897 \cdot V \]
\[4.5 \cdot \sin(-30^\circ) = -2.25 \cdot V \]

\[V_2 = 3.2 \angle 15^\circ \]
\[3.2 \cdot \cos(15^\circ) = 3.091 \cdot V \]
\[3.2 \cdot \sin(15^\circ) = 0.828 \cdot V \]

\[\{ \text{add} \} \]

\[V_3 = V_1 + V_2 \]

Change \(V_3 \) back to polar coordinates:

\[\sqrt{6.988^2 + 1.422^2} = 7.131 \]
\[\frac{-1.422}{6.988} = -11.502 \cdot \text{deg} \]

OR, in Mathcad notation (you’ll see these in future solutions):

\[|V_3| = 7.131 \cdot V \]
\[\arg(V_3) = -11.5 \cdot \text{deg} \]

Change \(V_3 \) back to the time domain:

\[v_3(t) = v_1(t) + v_2(t) = 7.13 \cdot \cos(\omega t - 11.5\cdot\text{deg}) \cdot V \]

Ex 2. Two sinusoidal voltages: \(v_1(t) = 5 \cdot \cos(\omega t + 36.87\cdot\text{deg}) \) and \(v_2(t) = 3.162 \cdot \cos(\omega t - 18.44\cdot\text{deg}) \)

a) using phasor notation, find \(v_3 = v_1 - v_2 \)

\[V_1 = 5 \cdot e^{j(36.87\cdot\text{deg})} \]
\[5 \cdot \cos(36.87\cdot\text{deg}) = 4 \cdot V \]
\[5 \cdot \sin(36.87\cdot\text{deg}) = 3 \cdot V \]

\[V_2 = 3.162 \cdot e^{j(-18.44\cdot\text{deg})} \]
\[3.162 \cdot \cos(-18.44\cdot\text{deg}) = 3 \cdot V \]
\[3.162 \cdot \sin(-18.44\cdot\text{deg}) = -1 \cdot V \]

\[V_3 = V_1 - V_2 \]
\[V_3 = 1 + 4j \cdot V \]

Magnitude: \[\sqrt{(1 \cdot V)^2 + (4 \cdot V)^2} = 4.123 \cdot V \]

OR:

\[|V_3| = 4.123 \cdot V \]

Angle: \[\frac{4 \cdot V}{1 \cdot V} = 75.96 \cdot \text{deg} \]

\[\arg(V_3) = 75.96 \cdot \text{deg} \]

So: \[v_3(t) = v_1(t) - v_2(t) = 4.123 \cdot \cos(\omega t + 75.96\cdot\text{deg}) \cdot V \]

What about Capacitors and Inductors?

Capacitors and Inductors in AC circuits cause 90\(^\circ\) phase shifts between voltages and currents because they integrate and differentiate. But... integration and differentiation is a piece-of-cake in phasors.
Calculus
\[
\frac{d}{dt} [A \cdot e^{j(\omega + \theta)t}] = j \omega \cdot A \cdot e^{j(\omega + \theta)t} = \omega A e^{j(\omega + \theta + 90 \text{ deg})}
\]
Drop the \(\omega t \) (\(t=0 \)) to get:
\[
= \frac{1}{\omega} A e^{j(\theta - 90 \text{ deg})}
\]

Impedance (like resistance)

Inductor
\[
v_L = L \frac{d}{dt} i_L = L \frac{d}{dt} I \cdot e^{j(\omega + \theta)t} = j \omega L I e^{j(\omega + \theta)t}
\]
\[\text{in phasor notation} \rightarrow \quad V_L(\omega) = j \omega L I(\omega) \]
\[\text{AC impedance} \quad Z_L = j \omega L \]

Capacitor
\[
i_C = C \frac{d}{dt} v_C = C \frac{d}{dt} V \cdot e^{j(\omega + \theta)t} = j \omega C V e^{j(\omega + \theta)t}
\]
\[\text{in phasor notation} \rightarrow \quad I_C(\omega) = j \omega C V(\omega) \]
\[\text{Z_C} = \frac{1}{j \omega C} = \frac{-j}{\omega C} \]

Resistor
\[
v_R = i_R \cdot R
\]
\[V_R(\omega) = R \cdot I(\omega) \quad \text{Z_R} = R \]

You can use impedances just like resistances as long as you deal with the complex arithmetic.
ALL the DC circuit analysis techniques will work with AC.

series:
\[
Z_{eq} = Z_1 + Z_2 + Z_3 + \ldots
\]

Example:
\[
\omega := 2 \pi f = 3141.6 \text{ rad/sec}
\]
\[
\frac{1}{j \omega C} = -530.516 j \cdot \Omega
\]
\[
Z_{eq} := R + \frac{1}{j \omega C} + j \omega L = 200 \cdot \Omega - 530.5 \cdot j \cdot \Omega + 251.3 \cdot j \cdot \Omega = 200 - 279.2 j \cdot \Omega \quad \text{rectangular form}
\]
\[
\sqrt{(200 \cdot \Omega)^2 + (279.2 \cdot \Omega)^2} = 343.4 \cdot \Omega
\]
\[
\text{atan} \left(\frac{279.2 \cdot \Omega}{200 \cdot \Omega} \right) = -54.38 \text{ deg}
\]
\[
Z_{eq} = 343.4 \Omega / -54.38 \text{ deg}
\]

If:
\[
V := 12 \cdot V \cdot e^{j0 \text{ deg}} \quad I := \frac{1}{Z_{eq}} = 12 \cdot V \frac{1}{343.4 \cdot \Omega} = 34.945 \cdot mA \quad 0 - -54.4 = 54.4 \text{ deg}
\]
\[
I = 34.95 \cdot mA / 54.4^\circ = I = 20.348 + 28.405 j \cdot mA
\]

Voltage divider:
\[
V_{Z_n} = V_{\text{total}} \frac{Z_n}{Z_1 + Z_2 + Z_3 + \ldots}
\]

Note: \(\frac{1}{j} = -j = 1 / -90^\circ \)
\[\text{Eg:} \quad V_C := \frac{1}{j \omega C} = \frac{12 \cdot V \cdot e^{j0 \text{ deg}}}{Z_{eq}} = \frac{530.516 \cdot e^{j90 \text{ deg}} \cdot \Omega}{343.4 \cdot e^{j54.38 \text{ deg}} \cdot \Omega}
\]
\[
12 \cdot V \cdot e^{j90 \text{ deg}} \cdot \Omega / 343.4 \cdot \Omega = 18.539 \cdot V \quad 0 - -90 - -54.4 = -35.6 \text{ deg}
\]

\[V_C = 18.54 \cdot V / -35.6^\circ = V_C = 15.069 - 10.795 j \cdot V\]
parallel:

\[Z_{eq} = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \ldots} \]

Example:

\[f := 500 \text{ Hz} \quad \omega := 2 \cdot \pi \cdot f \quad \omega = 3141.6 \cdot \frac{\text{rad}}{\text{sec}} \]

\[R := 200 \cdot \Omega \quad C := 0.6 \cdot \mu \text{F} \quad \frac{1}{\omega L} = 3.879 \cdot 10^{-3} \cdot \frac{1}{\Omega} \]

\[\frac{1}{j \cdot \omega \cdot C} = -530.516j \cdot \Omega \]

\[\omega C = 1.885 \cdot 10^{-3} \cdot \frac{1}{\Omega} \]

\[Z_{eq} = \frac{1}{\frac{1}{R} + \frac{1}{j \cdot \omega \cdot C} - \frac{j}{\omega L}} \]

\[= \frac{1}{\frac{1}{200 \cdot \Omega} + \frac{1.885 \cdot 10^{-3} \cdot j}{\frac{1}{\Omega}} - \frac{3.979 \cdot 10^{-3} \cdot j}{\frac{1}{\Omega}}} \]

\[= \frac{1}{5 \cdot 10^{-3} + 2.094 \cdot 10^{-3} \cdot j} \cdot \frac{1}{\Omega} \]

\[= \frac{170.156 + 71.261j}{2.93848 \cdot 10^{-5}} \]

\[\sqrt{\left(5 \cdot 10^{-3} \cdot \frac{1}{\Omega}\right)^2 + \left(2.094 \cdot 10^{-3} \cdot \frac{1}{\Omega}\right)^2} = 5.4 \cdot 10^{-3} \cdot \frac{1}{\Omega} \]

\[\frac{1}{5 \cdot 10^{-3} + 2.094 \cdot 10^{-3} \cdot j} \]

\[= 185.185 \cdot \Omega \]

\[Z_{eq} = 185.2 \angle 22.7^\circ \]

If: \(V := 12 \cdot \text{V} \cdot e^{j \cdot 0 \cdot \text{deg}} \)

\[I = \frac{V}{Z_{eq}} = \frac{12 \cdot \text{V}}{185.2 \cdot \Omega} = 64.795 \cdot \text{mA} \quad / \quad 0 - 22.7 = -22.7 \text{ deg} \]

\[I = 60 - 25.127j \cdot \text{mA} \]

Current divider:

\[I_{Zn} = \frac{1}{Z_n} \cdot \frac{I_{total}}{1 + \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \ldots} \]

Eg: \[I_L := I - \frac{1}{j \cdot \omega \cdot L} \]

\[= \frac{1}{\frac{1}{R} + \frac{1}{j \cdot \omega \cdot C} + \frac{j}{\omega L}} \]

\[= \frac{64.795 \cdot \text{mA} \cdot e^{-22.7 \cdot \text{deg}}}{251.327 \cdot \text{e}^{90 \cdot \text{deg}} \cdot \Omega} \]

\[= 64.795 \cdot \text{mA} \cdot 185.2 \cdot \Omega = 47.747 \cdot \text{mA} \quad / \quad 22.7 + 22.7 - 90 = -90 \text{ deg} \]

\[I_L = \frac{47.746j \cdot \text{mA}}{j \cdot \omega \cdot L} \]

Duh... \[\frac{V}{j \cdot \omega \cdot L} = -47.746j \cdot \text{mA} \]
ECE 2210 / 00 Phasor Examples

Ex 1. Find V_R, V_L, and V_C in polar phasor form. $f := 2$ kHz

1. Find V_R, V_L, and V_C in polar phasor form.

2. $f := 2$ kHz

3. $V(j\omega) = 6 \cdot V \cdot e^{j0}$

4. $R := 500 \Omega$

5. $L := 80 \text{ mH}$

6. $C := 0.4 \mu\text{F}$

7. $\omega := 2 \cdot \pi f$

8. $\omega = 1.257 \cdot 10^4 \text{ rad/sec}$

9. $Z_L := j \cdot \omega \cdot L$

10. $Z_L = 1.005 j \cdot \Omega$

11. $Z_C := \frac{1}{j \cdot \omega \cdot C}$

12. $Z_C = -0.199 j \cdot \Omega$

13. $Z_{eq} := R + j \cdot \omega \cdot L + \frac{1}{j \cdot \omega \cdot C}$

14. $Z_{eq} = 500 + 806.366 j \cdot \Omega$

15. $Z_{eq} = 500 / 806.366$

16. $\sqrt{500^2 + 806^2} = 948.491$

17. $\tan^{-1} \left(\frac{806}{500} \right) = 58.187 \cdot \text{deg}$

18. $Z_{eq} = 948.5 \Omega / 58.2^\circ$

19. Find the current: $I := \frac{6 \cdot V \cdot e^{j0}}{Z_{eq}}$

20. Find the magnitude:

21. $\text{magnitude: } \frac{6 \cdot V}{948.5 \cdot \Omega} = 6.326 \cdot \text{mA}$

22. Find the angle:

23. $\text{angle: } 0 \cdot \text{deg} - 58.2 \cdot \text{deg} = -58.2 \cdot \text{deg}$

24. $I = 6.326 \text{mA} / -58.2^\circ$

25. $\text{find the magnitude}$

26. find the angle

27. $V_R := I \cdot R$

28. $6.326 \cdot \text{mA} \cdot 500 \Omega = 3.163 \cdot \text{V}$

29. $-58.2 \cdot \text{deg} + 0 \cdot \text{deg} = -58.2 \cdot \text{deg}$

30. $V_R = 3.163 \text{V} / -58.2^\circ$

31. $V_L := I \cdot Z_L$

32. $6.326 \cdot \text{mA} \cdot 1005 \Omega = 6.358 \cdot \text{V}$

33. $-58.2 \cdot \text{deg} + 90 \cdot \text{deg} = 31.8 \cdot \text{deg}$

34. $V_L = 6.358 \text{V} / 31.8^\circ$

35. $V_C := I \cdot Z_C$

36. $6.326 \cdot \text{mA} \cdot (-199) \cdot \Omega = -1.259 \cdot \text{V}$

37. $-58.2 \cdot \text{deg} + (-90) \cdot \text{deg} = -148.2 \cdot \text{deg}$

38. $V_C = -1.259 \text{V} / -148.2^\circ$

39. OR: You can also find these voltages directly, using a voltage divider. I.E. to find V_C directly:

40. $V_C := \frac{1}{j \cdot \omega \cdot C} \cdot 6 \cdot V$

41. $R + j \cdot \omega \cdot L + \frac{1}{j \cdot \omega \cdot C}$

42. $\text{R} \cdot (j \cdot \omega \cdot C) + j \cdot \omega \cdot L \cdot (j \cdot \omega \cdot C) + 1$

43. $\text{R} \cdot (j \cdot \omega \cdot C) - \omega^2 \cdot L \cdot C + 1$

44. $= \frac{6 \cdot V}{-4.053 + 2.513 \cdot j} - \frac{6 \cdot V \cdot (-4.053 - 2.513 \cdot j)}{(-4.053)^2 + 2.513^2}$

45. $6 \cdot V \cdot (-4.053 - 2.513 \cdot j) = -24.318 - 15.078 \cdot \text{V}$

46. $(-4.053)^2 + 2.513^2 = 22.742$

47. $\frac{-24.318 - 15.078 \cdot j}{22.742} \cdot \text{V} = -1.069 - 0.663 \cdot \text{V}$

48. magnitude: $\sqrt{1.069^2 + 0.663^2} = 1.258$

49. angle: $\tan^{-1} \left(\frac{-0.663}{-1.069} \right) = 31.81 \cdot \text{deg}$

50. but this is actually in the third quadrant, so modify your calculator's results:

51. $31.81 \cdot \text{deg} - 180 \cdot \text{deg} = -148.19 \cdot \text{deg}$

52. $V_C = 1.258 \text{V} / -148.2^\circ$
Ex 2. a) Find Z_{eq}.
\[f = 2.5 \cdot 10^4 \quad \omega = 2 \pi f = 1.571 \cdot 10^4 \text{ rad sec} \]

\[Z_{eq} = j \cdot \omega \cdot L_1 + \frac{1}{j \cdot \omega \cdot C} + \frac{1}{R + j \cdot \omega \cdot L_2} \]

But it's easier to split the problem up

Left branch

\[Z_1 := \frac{1}{j \cdot \omega \cdot C} \]
\[Z_1 = -63.662 \cdot j \cdot \Omega \]
\[\frac{1}{j \cdot \omega \cdot C} = 0.01571 \cdot \frac{1}{\Omega} \]

Right branch

\[Z_r := j \cdot \omega \cdot L_2 + R \]
\[Z_r = 200 + 125.664 \cdot j \cdot \Omega \]
\[\frac{1}{200 + 125.664 \cdot j} = 3.585 \cdot 10^{-3} - 2.252 \cdot 10^{-3} j \]

denominator:
\[j \cdot \omega \cdot C + \frac{1}{R + j \cdot \omega \cdot L_2} = 0.01571 - j + \left(3.585 \cdot 10^{-3} - 2.252 \cdot 10^{-3} j \right) = 3.585 \cdot 10^{-3} + 1.346 \cdot 10^{-2} i \]

rectangular division:
\[\frac{1}{3.585 \cdot 10^{-3} + 1.346 \cdot 10^{-2} j} \cdot \frac{3.585 \cdot 10^{-3} - 1.346 \cdot 10^{-2} j}{3.585 \cdot 10^{-3} - 1.346 \cdot 10^{-2} j} = \frac{3.585 \cdot 10^{-3} - 1.346 \cdot 10^{-2} j}{3.585 \cdot 10^{-3} + 1.346 \cdot 10^{-2} j} = 1.94 \cdot 10^{-4} \]

\[\frac{(3.585 \cdot 10^{-3})^2 + (1.346 \cdot 10^{-2})^2}{1.94 \cdot 10^{-4}} = 1.94 \cdot 10^{-4} \]

add:
\[j \cdot \omega \cdot L_1 = 31.416 \cdot j \cdot \Omega \]
\[31.416 \cdot j + (18.479 - 69.381 \cdot j) = 18.479 - 37.965 \cdot j \cdot \Omega \]

convert to polar (if needed):
\[\sqrt{18.48^2 + 37.97^2} = 42.228 \]
\[\frac{-37.97}{18.48} = -64.048 \cdot \text{deg} \]
\[Z_{eq} = 42.23\Omega \angle 64.05^\circ \]

Another Way

Sometimes you might simplify a little before putting in numbers.

\[Z_{eq} = j \cdot \omega \cdot L_1 + \frac{1}{R + j \cdot \omega \cdot L_2 + j \cdot \omega \cdot C} \]

\[Z_{eq} = 31.416 \cdot j \cdot \Omega + \frac{(200 + 125.664 \cdot j) \cdot \Omega}{-0.974 + 3.142 j} \]
\[= 31.416 \cdot j \cdot \Omega + \frac{(200 - 0.974 - 125.664 + 3.142 j)}{0.974^2 + 3.142^2} \]

\[= 31.416 \cdot j \cdot \Omega + \frac{200.036288 - 750.796736 j}{10.82084} \]
\[= 31.416 \cdot j \cdot \Omega + 18.486 \cdot \Omega - 69.384 \cdot j \cdot \Omega = 18.486 - 37.968 \cdot j \cdot \Omega \]

\[\sqrt{18.49^2 + 37.97^2} = 42.23 \]
\[\frac{-37.97}{18.49} = -64.036 \cdot \text{deg} \]
\[Z_{eq} = 42.23\Omega \angle 64.04^\circ \]

a little roundoff difference
b) $V_{in} := 12 \cdot V \cdot e^{j \cdot 20 \cdot \text{deg}}$

Find I_{L1}, V_C

$I_{L1} := \frac{V_{in}}{Z_{eq}} = \frac{12 \cdot V}{42.23 \Omega} = 284.16 \cdot \text{mA}$

$V_C := I_{L1} \cdot (18.479 - 69.381 \cdot j) \cdot \Omega$

$V_C = 284 \cdot \text{mA} \cdot \sqrt{18.479^2 + 69.381^2} \cdot \Omega = 20.391 \cdot \text{V}$

$\text{atan} \left(\frac{-69.381}{18.479} \right) = 8.954 \cdot \text{deg}$

You could then use another voltage divider to find V_R or V_{L2}.

Another Way

To find V_C

directly:

$V_C := \frac{1}{R + j \cdot \omega \cdot L_2} + j \cdot \omega \cdot C \cdot V_{in} \quad \rightarrow \text{math} \rightarrow \quad V_C = 20.153 + 3.178j \cdot \text{V}$

Same but for a little roundoff difference

c) Let's find I_{L2}.

$Z_r = 200 + 125.664j \cdot \Omega$

$\sqrt{200^2 + 125.664^2} = 236.202$

$\text{atan} \left(\frac{125.664}{200} \right) = 32.142 \cdot \text{deg}$

$I_{L2} := \frac{V_C}{Z_r} = \frac{20.4 \cdot V \cdot e^{j \cdot 8.95 \cdot \text{deg}}}{236.202 \cdot \Omega \cdot e^{j \cdot 32.142 \cdot \text{deg}}} = \frac{20.4 \cdot V}{236.202 \cdot \Omega} / \left(8.95 - 32.142^\circ \right) = 86.4 \cdot \text{mA} / -23.19^\circ$

Another Way

Directly by Current divider:

$I_{L2} := \frac{1}{R + j \cdot \omega \cdot L_2} - j \cdot \omega \cdot C \cdot I_{L1} = \frac{1}{R + j \cdot \omega \cdot L_2} - j \cdot \omega \cdot C \cdot (1) = \frac{I_{L1}}{1 - \omega^2 \cdot C \cdot L_2 + j \cdot \omega \cdot C \cdot R}$

denominator:

$\sqrt{\left(1 - \omega^2 \cdot C \cdot L_2 \right)^2 + \left(\omega \cdot C \cdot R \right)^2} = 3.289$

$\text{atan} \left(\frac{\omega \cdot C \cdot R}{1 - \omega^2 \cdot C \cdot L_2} \right) + 180 \cdot \text{deg} = 107.224 \cdot \text{deg}$

$I_{L2} = \frac{284 \cdot \text{mA} \cdot e^{j \cdot 84.04 \cdot \text{deg}}}{3.289 \cdot e^{107.224 \cdot \text{deg}}} = \frac{284 \cdot \text{mA}}{3.289} / \left(84.04 - 107.224^\circ \right) = 86.4 \cdot \text{mA} / -23.18^\circ$

d) How about I_C?

$I_C := \frac{V_{C}}{j \cdot \omega \cdot C} = V_C \cdot j \cdot \omega \cdot C = 20.4 \cdot V \cdot e^{j \cdot 8.95 \cdot \text{deg}} / \left(0.015708 / 90^\circ \right) \cdot \frac{1}{\Omega} = 320 \cdot \text{mA} / 98.95^\circ$

Another Way

Could also be found directly by current divider:

$I_C := \frac{j \cdot \omega \cdot C}{j \cdot \omega \cdot C + 1} \cdot I_{L1} = \frac{320 \cdot \text{mA}}{98.95^\circ}$

Something Weird

I_C is greater than the input current (I_{L1}). What's going on?

The angle between I_C & I_{L2} is big enough that they somewhat cancel each other out (partially resonate).

Check Kirchoff's Current Law:

$I_C + I_{L2} = 29.485 + 282.569j \cdot \text{mA} = I_{L1} = 29.485 + 282.569j \cdot \text{mA}$

yes
ECE 2210 / 00 Phasor Examples p4

Ex 3. a) Find Z_2.

\[I := 25\text{mA}e^{j10\text{deg}} \]
\[V_{\text{in}} := 10\text{V}e^{-j20\text{deg}} \]
\[Z_T := \frac{V_{\text{in}}}{I} = \frac{10\text{V}}{25\text{mA}} e^{-20 - 10^\circ} = 400\Omega e^{30^\circ} \]
\[Z_T = 346.41 - 200j \ \Omega \]
\[Z_2 := Z_T - R - Z_1 = (346.41 - 200j) \cdot \Omega - 50\Omega - (120 - 60j) \cdot \Omega = 176.41 - 140j \ \Omega \]

b) Circle 1: i) The source current leads the source voltage

\[\text{answer because } 10^\circ > -20^\circ. \]

ii) The source voltage leads the source current

Ex 4. a) Find V_{in} in polar form.

\[I_Z := 100\text{mA} \]
\[Z := (80 - 60j) \cdot \Omega \]
\[\omega := 1000 \text{rad sec}^{-1} \]
\[V_{\text{in}} := I_Z Z \]
\[V_{\text{in}} = 8 - 6j \cdot \text{V} \]
\[\sqrt{8^2 + 6^2} = 10 \]
\[\text{atan} \left(\frac{-6}{8} \right) = -36.87 \text{deg} \]
\[V_{\text{in}} = 10\text{V} e^{-36.9^\circ} \]

b) Find I_T in polar form.

\[I_{\text{Z}} := V_{\text{in}} \]
\[I_{\text{R}} := \frac{V_{\text{in}}}{R} = \frac{10\text{V}}{50\Omega} e^{-36.9^\circ} = \frac{10\text{V}}{50\Omega} \cos(-36.9^\circ) + j\frac{10\text{V}}{50\Omega} \sin(-36.9^\circ) = 160 - 120i \cdot \text{mA} \]
\[I_T := I_{\text{R}} + I_{\text{Z}} = (160 - 120j) \cdot \text{mA} + 100\cdot \text{mA} = 260 - 120j \cdot \text{mA} \]
\[\sqrt{260^2 + 120^2} = 286.356 \]
\[\text{atan} \left(\frac{120}{260} \right) = -24.78 \text{deg} \]
\[I_T = 286\text{mA} e^{-24.8^\circ} \]

c) Circle 1: i) The source current leads the source voltage

\[\text{answer } i), \ -24.8^\circ > -36.9^\circ. \]

ii) The source voltage leads the source current

d) The impedance Z (above) is made of two components in series. What are they and what are their values?

\[Z = 80 - 60j \ \Omega \]

Must have a resistor because there is a real part.
\[R := \text{Re}(Z) \]
\[R = 80 \ \Omega \]

Must have a capacitor because the imaginary part is negative.
\[\text{Im}(Z) = -60 \ \Omega \]
\[C := \frac{-1}{\omega \cdot \text{Im}(Z)} \]
\[C = 16.667 \ \mu\text{F} \]
Ex 5. The impedance $Z = 80 - 60j \ \Omega$ is made of two components in parallel. What are they and what are their values?

Must have a resistor because there is a real part.

Must have an capacitor because the imaginary part is negative.

$$Z = \frac{1}{\frac{1}{R} + j\omega C}$$

$$\frac{1}{Z} = 0.008 + 0.006i \ \Omega^{-1} = \frac{1}{R + j\omega C}$$

$$\frac{1}{R} = 0.008 \ \Omega$$

$$R := \frac{1}{0.008 \ \Omega^{-1}} = 125 \ \Omega$$

$$\omega C = 0.006 \ \Omega$$

$$C := \frac{0.006 \ \Omega^{-1}}{\omega} = 6 \ \mu F$$

Positive imaginary parts would require inductors.

Ex 6. a) Find I_1

$$\omega := 20000 \ \text{rad/sec}$$

$$V_{\text{in}} := 20 \ \text{V} \cdot e^{j30\text{deg}}$$

$$I_1 := \frac{V_{\text{in}}}{R} = \frac{20 \ \text{V}}{250 \ \Omega} \cdot e^{j30\text{deg}} = 80 \ \text{mA} \cdot e^{j30\text{deg}}$$

polar division

b) Circle 1:

i) V_{in} leads I_2

Why? Show numbers: $30^\circ > 20^\circ$

ii) V_{in} lags I_2

c) Find Z_2 in polar form

Convert V_{in} to rectangular coordinates

$$20 \cdot \cos(30\text{deg}) = 17.321 \ \text{V} \quad 20 \cdot \sin(30\text{deg}) = 10 \ \text{V}$$

Convert V_{Z1} to rectangular coordinates

$$V_{Z1} = (8 - 5j) \cdot V$$

$$20 \cdot \cos(30\text{deg}) = 17.321 \ \text{V} \quad 20 \cdot \sin(30\text{deg}) = 10 \ \text{V}$$

$$V_{Z2} = 9.321 + 15j \ \text{V}$$

Subtract

$$\sqrt{9.321^2 + 15^2} = |V_{Z2}| = 17.66 \ \text{V}$$

$$\arg(V_{Z2}) = 58.145 \ \text{deg}$$

$$\frac{V_{Z2}}{I_2} = \frac{17.66 - 58.145\text{deg}}{20 \ \text{mA}} = 883 \ \Omega$$

$$Z_2 = 694.436 + 545.379j \ \Omega$$
Ex 7. You need to design a circuit in which the "output" voltage leads the input voltage (\(v_S(t)\)) by 40° of phase.

a) What should go in the box: R, L, C?

\[
V_o = \frac{Z_{\text{box}}}{R + Z_{\text{box}}} V_S
\]

angle of \(\frac{Z_{\text{box}}}{R + Z_{\text{box}}}\) is 40°.

This can only happen if the angle of \(Z_{\text{box}}\) is positive, so \(Z_{\text{box}}\) is an inductor

b) Find its value. \(V_o = \frac{\omega L}{R + j\omega L} V_S\) angle \(\frac{\omega L}{R + j\omega L}\) is 90° - atan \(\frac{\omega L}{R}\) = 40°.

So: \(\text{atan} \left(\frac{\omega L}{R} \right) = 50°\)
\(\frac{\omega L}{R} = \tan(50\text{-deg}) = 1.192\)
\(L = \frac{R \cdot 1.192}{\omega} = 75.9\text{ mH}\)

c) Repeat if the "output" voltage should lag the input voltage (\(v_S(t)\)) by 20° of phase.

angle of \(\frac{Z_{\text{box}}}{R + Z_{\text{box}}}\) is -20°. This can only happen if the angle of \(Z_{\text{box}}\) is negative, so \(Z_{\text{box}}\) is a capacitor

\[
V_o = \frac{1}{R + j\omega C} V_S
\]

angle \(\frac{1}{R + j\omega C}\) is 90° - atan \(\frac{1}{\omega C \cdot R}\) = -70°.
\(\frac{1}{\omega C \cdot R} = \tan(-70\text{-deg}) = -2.747\)
\(C = \frac{1}{\omega R \cdot 2.747} = 0.145\text{ µF}\)

Ex 8. Find \(V_O\) in the circuit shown. Express it as a magnitude and phase angle (polar).

\[
V_S := 6\cdot V \cdot e^{j\text{-18-deg}}
\]

Simple voltage divider

\[
\left| Z_2 \right| = 40\text{-deg} = 40\cdot\Omega
\]
\[
\left| Z_2 \right| = 69.282\cdot\Omega
\]
\[
Z_1 = 25\cdot\Omega + 35j\cdot\Omega
\]
\[
Z_2 = 80\cdot\Omega \cdot e^{j\text{-60-deg}}
\]
\[
Z_1 + Z_2 = 25\cdot\Omega + 35j\cdot\Omega + 40\cdot\Omega - 69.282j\cdot\Omega = 65 - 34.282j\cdot\Omega = 73.486\cdot\Omega \cdot e^{j\text{-27.81-deg}}
\]
\[
V_O := \frac{Z_2}{Z_1 + Z_2} V_S = \frac{80\cdot\Omega \cdot e^{j\text{-60-deg}}}{73.486\cdot\Omega \cdot e^{j\text{-27.81-deg}}} \cdot (6\cdot V\cdot e^{j\text{18-deg}}) = \frac{80\cdot\Omega}{73.486\cdot\Omega} \cdot 6\cdot V \cdot e^{j\text{(-60 - (-27.81) + 18)}} = 6.53\cdot V \cdot e^{j\text{14.2-deg}}
\]