ECE 2200/10 Lecture 1 Introduction to Electrical Engineering for non-majors A. Stolp

12/30/11
2200 =1/2 semester (Mining, Mat. Sci.) 8/24/15

ECE 2200 Without the Physics is hard, Plan on it!
Bad option: In your last lab session, Start labs Today

2200, Decide today when you want to take the final: 2nd option: With 2210 Exam 2 on 3/4. Start labs next week.

If you don't take the later final you will have to start labs THIS WEEK.

2210 = Full semester (Mechanical, Chemical, etc.) Make sure you are
Labs start next week Possible new labs, Th, 10:45 & F, 11:50 registered for the right class
2210 Final Friday, April 24, 8:00am (2200 or 2210) and that you
Subject to change, listen in class have the right syllabus.
BOTH

Bring a lab notebook and a U-card with $20 to 15t lab.
Homeworks are due by 5:00 pm in locker (see map for location of lockers)
WARNING: HWs are often due on non-class days.

How to survive
1. Easiest way to get through school is to actually learn and retain what you are asked to learn.
Even if you're too busy, don't lose your good study practices.
What you "just get by" on today will cost you later.

Don't fall for the "I'll never need to know this" trap. Sure, much of what you learn you may not use, but
you will need some of it, some day, either in the current class, future classes, or maybe sometime in
your career. Don't waste time second-guessing the curriculum, It'll still be easier to just do your best to
learn and retain what is covered.

2. Don't fall for the "traps".
Homework answers, Problem session solutions, Posted solutions, Lecture notes.

3. KEEP UP! Use calendar.
4. Make "permanent notes" after you've finished a subject or section and feel that you know it.
Lecture

Basic electrical quantities Letter used Units Fluid Analogy
Charge, actually moves Q Coulomb (C) m’
Q m’
Current, like fluid flow I = = Amp (A, mA, HA,...) —
Sec Sec
Voltage, like pressure V or E volt (V, mV, kV,...) Pa= 1-ﬁ
m2
Resistance —M N R = XI Ohm (Q, kQ, MQ,...)
Conductance  —" ™, — G = & Siemens (S, also mho, old unit)
Power = energy/time P= VI Watt (W, mW, kW, MW,...) W

Symbols (ideal)

Node = All points buttery /\/iz/\/
deal wire connected by wire + —l— e t
GSSume ’_4{ % connected a DFT Variable

connected Fesistars
voltage sources
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ECE 2210 Lecture 1 notes p2 |247

_ I5 in out
KCL, Kirchhoff's Current Law — | [a= | |
lin = 1oyt ©f any point, part, or section |—E:' J7| 17127 13774
1 4

in aut

e

2my's

in out

i metal wire i

2@/8 D>? (conductar) 7 =
=2A j |
D}F i =
4A l 94
in out
3 3 Z‘\)Exﬁ\
2rs | 3rm/s
> J<
] 44 l —GA
1 3 negative current
Trn /S means the direction
Z‘\) 54 arrow is wrong
DE) bipe ( Conductors Nonconductors

Massless fluid in our analogy

No gravity effects No Bernoulli effects
0K for fluids in pipes
NOT for charges in wires Reasonable because:

Electron mass is 9.11:10 %L kg

Election chargeis -1.6-10 e

Battery also obeys KCL N egatlvg chqrge f lows
. in negative direction

No accumulation of charge anywhere,

so it must circulate around.
Leads to the concept of a "Circuit"

current

Battery

A clircuit

Voltage is like pressure

KVL, Kirchhoff's Voltage Law
=
B 1B ¥ + J? . 2
v gans” v drops +
Lk Lk 4 | 2R,
—= —= - =
around any loop o I -
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ECE 2210 Lectures 2 & 3 notes A. Stolp
1/28/06,
Ohm's law  (resistors) T,V o/5/08
E R
V = IR W
R R = T definition of resistance and the unit "Q" n
Power
3 m> N m N N-m Joule
flow — pressure = — flow x pressure: —— = —— = — = —— = W =power
sec m3 SEC 2 sec 1 sec sec
same for electricity power P = IV P =5
IN ouT
2
. . \Y; 2 [I QuUT
Power dissipated by resistors: P=VI = — =1I°R
R 4 F Ak
cantributa  dissipate
Series Resistors |
—[:_::.
V= IR
L Rl 1 1
E— \% Vi,+V \% \%
__ _ VT o VatVae Vg 2
Vs L R T
Vo= IR
Ro 2 2 O e —O
Req = Rl + R2
Resistors are in series if and only if exactly the same current flows through each resistor.
Parallel Resistors
al
_[:-:;_
l 1= VS l5 = VS
1- 5 2 - o
+ Ri R2
V S -
— Ry R - Vs, Vs R.o-'s_ Vs _ 1
B T7RL Ry o vgvs 11
R; R; Ri1 Ry
-
1
R =
T R1 R2
R1 Ry
-

Resistors are in parallel if and only if the same voltage is across each resistor.

ECE 2210 Lectures 2 & 3 notes pl



Series and Parallel

R1 Ro
a
R
R 4 Rg
Rg
R7 Rg
Rg
R0 R11 Rio
b O
Ri3 R4

ECE 2210 Lectures 2 & 3 notes p2

All resistor-only networks can be reduced to a single equivalent, but not always by means of series and parallel concepts.

Voltage Divider

e S Exactly the same
current through each

series : :
resistor

Req: R1+R2+R3+

Current Divider

1
parallel : R j(y = ———
o + 1.1 -
Exactly the same
Ro R3

voltage across each
resistor

b

Voltage divider :

Rn

V =V -
Rn total
Ri+Ro+R3s .

current divider :

1
o Ra
Rn total 1 1 1
Rq1 Ry Rg

May have to combine some resistors first to get series and parallel resistors to use with divider expressions.

|
_T[:-;:.

VRa=




Resistors

Sources
battery
A %
FoT
voltage sources
Battery  Cell

Doesn't make sense with
for ideal voltage sources
and ideal wires

small R

ECE 2210

med R
R =
1V

Lectures 2 & 3 notes p3

1 _4v
slope Al
lS
current
SolUroe

Less intuitive, less like sources
we are used to seeing.

Doesn't make sense
for ideal current sources

Ground

= m L

Ground symbols

Must have a path for the
current to flow

Ground is considered zero volts and is a reference for other voltages. ECE 2210

Lectures 2 & 3 notes p3



Nodes & Branches ECE 2210 Lectures 2 & 3 notes

Node = all points connected by wire, all at same voltage (potential)

Branch = all parts with the same current
£ -
Ll Ll
= =
2 2
1o o G §
_— =
— 2
— = - =
c g
o a
L 5
ground is a node - - - -
Meters R—c0 R0
@ @ @ idealy: voltmeterl) ammeter
open short
Volt  Amp Ohm T
meters
Analog meters
. voltmeter ammeter Ohmmeter
multimeter

o

@ o Q ¢ —

i Lol b
Digital meter
o— Input & Sample — Analog to | i
Probes | Range and Hold Digital D/A ﬂ Hﬂ H H H
o Selection S/H — Converter ﬂ ﬂ H [] ﬂ ﬂ
Display

ECE 2210 Lectures 2 & 3 notes p4
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ECE 2210 Lecture 4 notes

Superposition A. Stolp
. . . 9/3/08,
Circuits with more than one Source b /31/09
1
Recall Statics. To find the reaction at each support, s to each \l/
load on a beam (or anything else) can be found separately for w v
each load. the total reactions are simply the sum of the rér ,pég,
P P
1 2 + Py
Al W 1/
JTTTRATTITTTIITTIITTTITINATTL = ‘
+ w
Sperpos't'on ST T LTI L]
u 1Tl g
For circuits with more than 1 source. A
1) Zero all but one source.
(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
2) Compute your wanted voltage or current due to the remaining source. Careful, some may be negative.
3) Repeat the first two steps for all the sources.
4) Sum all the contributions from all the sources to find the actual voltage or current. Watch your signs!
N _ + VRL -
Ex1. Use the method of superposition to find the "N
current I, (through R,) and the voltage across R; R. -1
) 1~ 100-Q
(VRy)- Be sure to clearly show and circle your Iy
intermediate results. VvV s- 6-V | s- 18-mA
g— R 5 =200-Q CD
superposition:
Eliminate current source
v 200mA-100-Q =2V
_ S . \% _
lovs'= I'2vs=20"MA + Rl
R1+R2 N
R =100-Q 6V _oouma
R4 300-Q
V'RLVs Vs Vv —owy
’ R 1+ R 2 R1Vs~™ —
— R 2= 200-Q
V s= 6V ‘
Eliminate voltage source
1
R, + VRL —
lo)s'=" 1g I51s="6"mA R
1.1 Rp=100:Q ||,
2
R1 R2 | g=18'mA
VRus~laisR2 VR1s=12V
R 2= 200-Q
W
Add results
2 =l2vstlals I3 =14"mA
VR1 =V RLvst VRLls VRp=32:Vv

ECE 2210 Lecture 4 notes pl
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Ex2. Use the method of superposition to find the voltage accross
through R, and the current through R3. Be sure to clearly
show and circle your intermediate results.

Eliminate current source

R, is a separate path and doesn't matter.

Ro
VrRovs - - Vs -
VS R,+Rg V R2ys=48V
R, =2+kQ
Vs
| =2 ~ R 5 =3+kQ
R3VS' R,+Rg I R3ys = 24 MA S A
lRgy — =
Eliminate voltage source
R, is shorted and doesn't matter.
v = 1 v =24V R, =1kQ
R2Is ~Is— R2.Is =2 1=
7+7
R2 R3 § R, =2kQ
L R 3 =3kQ
Rj | N
I R3|s = 1g _ R3ll
. i+i |R3|S—08°mA
Ry Rg m
IUI
| o =2:mA
Add results S
VRrR2“VRvstVR2s VRe=72V
IRz = IR3vsT | R3ls I Rz ="16"mA

ECE 2210 Lecture 4 notes p2



ECE 2210 Lectures5 & 6 notes Thévenin & Norton Equivalent Circuits

Model of a Real Source

A. Stolp
1/28/06
9/2/09

Real sources are not ideal, but we will model them with two ideal components.

! term

—=
S IR |
R
S | Viem +
-+ R Vi
% V IS Variable L
—
-—=n
I
<L’> R
R

-_—

Thévevin Equivalent Circuit

! term
[ R, =0 (short)

R, =R¢ (max power)

R, = (open)

-+

"V term

% Note: R, is NOT part of the Thévenin equivalent
circuit and does not need to be shown.

The same model can be used for any combination of sources and resistors.

Thévenin equivalent
To calculate a circuit's Thévenin equivalent:

1) Remove the load and calculate the open-circuit voltage where the load used to be.

This is the Thévenin voltage (V).
2) Zero all the sources.

(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals.
(DO NOT include the load in this resistance.) This is the Thévenin source resistance (Ryy).

4) Draw the Thévenin equivalent circuit and add your values.

ECE 2210 Lecture 5 notes pl
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,———'—_)F::\\_—‘——m\ _I_
R_\_\_\__,_,_,_j
Vi
R R
I S L
_O'__'I

Note: R, is not part of the Norton equivalent
L m-—-—a and does not need to be shown.

Norton equivalent
To calculate a circuit's Norton equivalent:
1) Replace the load with a short (a wire) and calculate the short-circuit current in this wire.
This is the Norton current (l). Remove the short.
2) Zero all the sources.
(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals.
(DO NOT include the load in this resistance.) This is the Norton source resistance (Ry).
(Exactly the same as the Thévenin source resistance (Ry)).

4) Draw the Norton equivalent circuit and add your values. -—=n

I'N

OR (the more common way)... |
1) Find the Thévenin equivalent circuit. Vth R .= .
2) Convert to Norton circuit, then >>> RN = R1h and IN= — N <>R L

ECE 2210 Lecture 5 notes p2



ECE 2210 Lecture 5 notes p3 Thévevin & Norton Examples A.Stolp

1/23/03,

EX 1 Find the Thévenin equivalent: 1/6/13
R 1~ 40-Q

AV
Ve-20v({ T R, =120-Q R, =60Q
s=2Vi 2 120 L~ 60

To calculate a circuit's Thévenin equivalent:
1) Remove the load and calculate the open-circuit voltage where the load used to be.
This is the Thévenin voltage (V).

R, =40-Q
VAV 1

Find the open circuit voltage:

R, =120Q R
V o =20V /7 F 2 B N 2 _aE.
S § Voe= Vi =Vg— " V=15V
— RlJrRz

i

2) Zero all the sources.
(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)

3) Compute the total resistance between the load terminals.

R 1=40-Q (DO NOT include the load in this resistance.)
VAV é; This is the Thévenin source resistance (Ryp).
R, =120-0 Find the Thevenin resistance:
Zero the source § Ry - 1
™ RTh=30"Q

7 R1+Rz

4) Draw the Thévenin equivalent circuit and add your values.

Thevenin equivalent circuit: If the load were reconnected:
RTh:3O'Q RTh:30'Q
V 1h =15V V 1h =15V R =60-Q
RL
ThtNL
\Y
I = o 166.7°mA
R R
ThtNL

b) Find the Norton equivalent circuit:

P = 10-V-166.7-mA =1.667 W
My
R4 =40-Q
\V; Norton equivalent circuit:
TNV g =20V Iy
_/ R1
Iy =500°mA

ECE 2210 Lecture 5 notes p3



ECE 2210 Lecture 5 notes p4
c) Show that the Thévenin circuit is indeed equivalent to the original at several values of R, .

Original Circuit Thévenin Circuit

Vs ViTh
R L= 0-Q 0V =500*mA —— =500°'mA 500-mA-0-Q =0V

Using either numbers: P = V 1 = O-W

1 VTh
R, =10Q Ro=—"— R=9.231°Q I V=R
1.1 Rht RL
R2 Ry || =375'mA V| =375+
R (0]
Vi =Vg =3.75*V
R 1 + R 0 Vv L
L = a =375'mA
L Using either numbers: P| = V I =1.406°W
Repeat these
calculations for a V= I = I = V=
number of load
) Ro VL Vv
resistors i i Th
Vg S
RL: Roi R1+ROI RLI RTh+RLI ILIRLI PLI
|
Q V mA mA V W
0-Q
o 0 0 0 500 0 0
0.992 | [0.484 483.871 483.871 0.484 0.234
100 9231 | [3.75 375 375 3.75 1.406
20:Q 17143 | 6 300 300 6 18
30-Q 24 75 250 250 75 1.875| max
40-Q 30 8.571 214.286 214.286 8.571 1.837
60-Q 40 10 166.667 166.667 10 1.667
120-Q 60 12 100 100 12 1.2
240-Q 80 13.333 55.556 55.556 13.333 0.741
0 Q 120 15 0 0 15 0
Plots
15
volts
101
Vv Li
—
5 ——
0.5 1 Power delivered to the load (R,)
as a function of R
1 1 1 1 1 1 1 1 1 ! ! 1 00 ——>
0 0.1 0.2 0.3 0.4 0.5 0 30 60 0 120 150 180 210 240
I amps Ry, Q
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Maximum power transfer If | wanted to maximize the power dissipated by
the load, what R, would | choose?

Rs
2 2 2
A R 1 R 2 1
Vg R PL= = Vgl — = —— Vg
RL RstRL RL (Rg+Ry) RL
2
_ R 21 R 2
= .V s — = , 2.\/ S
_ 1 vV 2 d
B 2 S Next step would be to differentiate  —— PL<R L>
—= +2RgtR|
RL set this equal to 0 and solve for R to find the maximum
Unfortunately this function is a pain to differentiate. 2 2
What if we just differentiate the denominator and find d Rg _ Rg _
. - ) . —|—+2Rg+ R =-1.—+0+1 =0
its minimum, wouldn't that work just as well? dR | R R, 2
L
Maximum power transfer happens when: R = Rg
03T -
maxatR, =R Just what we saw in Example 1
02T This is rarely important in power circuitry, where
PL<R L> there should be plenty of power and R should be
014 small. Itis much more likely to be important in
signal circuitry where the voltages can be very
. . . . ﬂ small and the source resistance may be
0 1 p) 3 4 R S significant -- say a microphone or a radio antenna.

All you need to remember is: R| = Rg tomaximize the power dissipationin R

What about efficiency?

n (%) 100
The bigger R, is, the higher the efficiency.

50 T

0 2 4 6 ' 10 —

ECE 2210 Lecture 5 & 6 notes p5



EX 2 a) Find and draw the Thévenin equivalent circuit. ECE 2210 Lecture 5 & 6 notes p6

Rp.715kQ Ry =2kQ Find the open circuit voltage:

M AN — T
21
Vgi=18V [ . f\;{\” f\é\"
— R, =3kQ <R, =1kQ < R, =450-Q 1 2
3 4 L gu— R3 Ry
- — \ oC =V Th
P 21
First do some simplification:
R
. - eq234
1+ Reg234
Vip34 =9V
Ry
=V V =3V
h 234 Th
R 2 + R 4
Find the Thévenin resistance:
SYAY AYAY =
Zero the source - 1 _ .
RTh" RTh—7SOQ
1 1
R, 1
~ 4 R~ +
271 1
- + -
R 1 R 3
Thévenin equivalent circuit; _ .
Rh=750Q If the load were reconnected:
R
V=3V ViV V| =1125v
Tht L
V
|L;:7Th IL:2.5°mA
R Tth R L
b) Find and draw the Norton equivalent circuit. RN “RTh
—
V
= Th = . = .
N |y =4"mA §RN—750§2
Th
a8

ECE 2210 Lecture 5 & 6 notes p6
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¢) Use your Norton equivalent circuit to find the current through the load.

=S
R
Iy =4°mA N R

N § R =450-Q |L::7L-|N I =25'mA

11

+7

Rn R
V=R V| =1125:V

same as above
d) What value of R would result in the maximum power delivery to R ?

For maximum power transfer R | = Ry, =750°Q

e) What is the maximum power transfer? R =750Q
\%
Th
V 1 =3V - v, -
h R, =750-Q L=,

2

Vi

PL = =3-mW
R
EX 3 a) Find and draw the Thévenin & Norton equivalent circuits. R, =50Q R, =150
VAN SV

- R =20Q ‘=

Vs~ Vsl
RitR2
o5y I =0.5-A
= - .._-:_]_
VA, VAV
Ve =lov|  R1 é R2 Vg2 =20V m é; R W
S1- | + <+> 1~ 2= 15-Q
— 125V _ 1
- Rih =
1 1
L Ry R,
V 1p =10V + 25V - 1 72
R =3.75'Q
Thévenin equivalent circuit: R, =3.75-Q
Norton equivalent circuit: R -R
N~ "™Th
= . \% —
V =125V | - Th
R
Th § Ry =380
|y =3:333°A
o
b) Use your Thévenin equivalent circuit R1p=3.75Q
to find the voltage across the load.
V =125V
+ R| =20°Q
_ RL
Vi = ———V1,=10526-V
Rth+R
Th L

ECE 2210 Lecture 5 & 6 notes p7



EX 4 a) Find and draw the Thévenin & Norton equivalent circuits. ECE 2210 Lecture 5 & 6 notes p8
R{=40Q R, =1200

Yy A B Use superposition to find V ¢,
VooV % | 5= 50-mA
S UL R -720Q
T 3 R g3 =240-Q N 1 N
R1 R2 eliminate
J— \Y R current
— Th.V 3
— 0. source
\% s= 9V
¢
R->+R
| Voy - (2R3
4) VAN
eliminate R1 Ro R V 1thy =81V
voltage 3§
source
| ¢ =50*mA
S
7
1
y Ri+R2
current divider: | 12 :ﬁ'l S | 12 =30°'mA Vv Thi = 12R 1 V Thl =-1.2°V
+ [
R 1 +R 2 R 3
VTh =V Thv+V Thi VTh=69°V
R 1 =40-Q R 5 =120"Q
Find the Thévenin resistance " 4) A
‘7 1
RTh . 1 5 R3=240"Q
R 1 R 2+ R 3
Thévenin equivalent circuit:
Put the load R1p=36°Q Vh
back on i ::ﬁ || =63.889°mA
_ RTh=36°Q _ ThTRL
V 1h=6.9V Th V 1h=6.9V
R =72:Q

V L: |LRL:46°V

Norton equivalent circuit:

ECE 2210 Lecture 5 & 6 notes p8
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EX 5 A NiCad Battery pack is used to power a cell phone. When the phone is switched on the battery pack voltage
drops from 4.80 V to 4.65 V and the cell phone draws 50 mA. V =480V V gp =465V

a) Draw a simple, reasonable model of the battery pack using ideal parts.
Find the value of each part.

VeV
Vs Vg . +
Rg=—— J750-mA Rg=3'Q

50-mA 4.65V
48-V

V=48V — phone V g=48V —

b) The cell phone is used to make a call. Now it draws 300 mA.
What is the battery pack voltage now?

!

B | o = 300-mA
Rg=3Q Vg J703“

Vg=48V— phone
Vv B: Vv S~ | Ca”R S:39°V

¢) The battery pack is placed in a charger. The charger supplies 5.10 V. How much current flows into the

battery pack?
_ ' chg N
Rg=3Q <+>V chg '=5.10-V
Vv -V
_ — - _ chg S _ .
Vg=48V — 'chg = R7-100mA
Lo— >

EX 6 Consider the circuit at right.

a) What value of load resistor (R ) would you )
choose if you wanted to maximize the o Rgi=8Q RL
lg=1A

power dissipation in that load resistor.

RL::RS RL:8'Q

b) With that load resistor (R, ) find the power dissipation in the load.

- - | 2R =o.
L= PL= I >R =2'W

ECE 2210 Lecture 5 & 6 notes p9
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Ex 7 R1::40-Q R21:12.5-Q R3::10-Q
l | s- 180-mA
VS 9-Vv R4::90-Q RL::3O-Q
Use superposition to find V ¢, Rg =60Q
R 1 =40-Q R 2 =125Q
MW current divider:
1
o ZB R4 =90°Q - -
ethmate R 2+ R 4t R 6
voltage | = | | =35.556°mA
source R4 1 1 S R4
R1:40°Q R2:12.5°Q
‘ O
Ry
eliminate _ \% = -V \% =4-V
current R4 =90"Q Thv R1+Ro+R4+Rg S Thv
source
Rz =60°Q L
6 5 Vth =V 1hv VY Thi
V Th= 7.2V
R1:40°Q R2:12.5°Q R3:10°Q
RT1h = 1 +R R 1 =60°Q
R 4=90Q Th i+ 1 3 Th
R 6= 60-Q
O
Thévenin equivalent circuit:
R 1H=60°Q E;(t;ihsnload R 1, =60°Q Vo
ly = I, =80°mA
L L
RTth R L
VTh:7.2°V VTh:7.2°V
R L =30-Q

V L: |LRL:24'V

Norton equivalent circuit:

ECE 2210 Lecture5 & 6 notes pl0



ECE 2210 Lecture 7 notes Nodal Analysis oo

General Network Analysis Vs
In many cases you have multiple unknowns in a circuit, say the voltages across multiple resistors. Network analysis
is a systematic way to generate multiple equations which can be solved to find the multiple unknowns. These
equations are based on basic Kirchoff's and Ohm's laws.

Loop or Mesh Analysis You may have used these methods in previous classes, particularly in Physics. The best
thing to do now is to forget all that. Loop analysis is rarely the easiest way to analyze a circuit and is inherently
confusing. Hopefully I've brought you to a stage where you have some intuitive feeling for how currents flow in circuits.
| don't want to ruin that now by screwing around with loop currents that don't really exist.

Nodal analysis This is a much better method. It's just as powerful, usually easier, and helps you develop your
intuitive feeling for how circuits work.

Nodal Analysis
Node = all points connected by wire, all at same voltage (potential)

Ground: One node in the circuit which will be our reference node. Ground, by definition, will be the zero voltage node.
All other node voltages will be referenced to ground and may be positive or negative. Think of gage pressure in a fluid
system. In that case atmospheric pressure is considered zero. If there is no ground in the circuit, define one for
yourself. Try to chose a node which is hooked to one side of a voltage source.

Nodal Voltage: The voltage of a node referenced to ground. The objective of nodal analysis is to find all the nodal
voltages. If you know the voltage at a node then it's a "known" node. Ground is a known node (duh, it's zero). If one
end of a known voltage source hooked to ground, then the node on the other end is also known (another duh).

Method: Label all the unknown nodes as; "a", "b", "c", etc. Then the unknown nodal voltages become; V, Vy, V, etc.
Write a KCL equation for each unknown node, defining currents as necessary. Replace each unknown current with an
Ohm's law relationship using the nodal voltages. Now you have just as many equations as unknowns. Solve.

Nodal Analysis Steps

1) If the circuit doesn't already have a ground, label one node as ground (zero voltage).
If the ground can be defined as one side of a voltage source, that will make the following steps easier.
Label the remaining node, either with known voltages or with letters, a, b, ...

2) Label unknown node voltages as V., Vy, ... and label the current in each resistor as Iy, I,, ....

3) Write Kirchoff's current equations for each unknown node. Va-Vp

4) Replace the currents in your KCL equations with expressions like this. — - Ohm's law relationship

. . . ing the n | vol .
5) Solve the multiple equations for the multiple unknown voltages. 1 using the nodal voltages

Nodal Analysis Examples

EX 1 Use nodal analysis to find the voltage across R, (V).

R{=1kQ
—
+ VR1—
R, =2:kQ
!
_ + R3 -
Vg =10V <> R3:=3kQ
| g'=4-mA

1) See next page
Label one node as ground (zero voltage). By choosing the negative side of a voltage source as ground, the
upper-left node is known (10V). Label the remaining nodes, either with known voltages or with letters, a, b, ....

ECE 2210 Lecture 7 notes pl



2) Label unknown node voltages as V, Vy, ... ECE 2210  Lecture 7 notes p2

and label the current in each resistor as |4, I, .... R . =10 Iy Va
; —f= @

3) Write Kirchoff's current equations for node a.
| 1 + | S = | R3

4) Replace the currents in the KCL equations
with Ohm's law relationships.

VeV V,-0
B | o= 4+mA
R S R S
1 3
Vg Vg, Vg —
R1 Rg R3
5) Solve: Usually it's easier to put in the numbers at this point
v Va V 10V Va Va
R R3 R4 | 1-kQ 3:kQ 1-kQ
|  Multiply both sides by a value that will clear the denominators.
Y% I _ % %
78*'8 = Va g +i | 3.|<Q.ﬂ+4.mA = a. a .3.kQ
|
Vg | 30V + 3-kQ-4-mA = Vat3Vgy
Iy s |
R1 | 30V + 12V = 4V
Va7~ V =105V a
1 1 | 42V
P | Va= =10.5-V
R1 Rz 4
Either way, you still have to find Vg, from V.
VR =Vg Vg VR=05V V p doesn't matter in this case
Va
b) Find the current through R; (Ig3). lR3 = . =3.5°'mA
3

EX 2 Same circuit used in Thévenin example, where R, was R, .

R1:=40Q R =120-Q
AVaV My
VS:9V ISZSOmA

1 §R472-Q

R 3:=240:Q

1) Define ground and nodes:
9V a b
SV VAY

2 unknown nodes ---> will need 2 equations

ECE 2210 Lecture 7 notes p2



2) Label unknown node voltages as V, V,, ... and ECE 2210 Lecture 7 notes p3

label the current in each resistor as Iy, I, ....
It doesn't matter if these currents are in the correct directions.

I I
Vg 1 2

\% \%
a —i= b
9.V AVAY AVAY 3) Write Kirchoff's current equations for each unknown node.
i "2 I S d | | |
— node a = +
Vg — R4%|, . R 3>$ g 1 2 4
W node b | 2 = | 3 + | S
N VaVp
4) Replace the currents in your KCL equations with expressions like this. Rl
1
node a 1 = Iy + I 4 node b I = I3 + l'g
Vg-Va VaVy V-0V Va-Vp  Vp-0Vv
= + = + |
S
R4 R, Ry R, R3
Now you have just as many equations as unknowns.
5) Solve the multiple equations for the multiple unknown voltages. Solve by any method you like: Vg
—
S
Vs Va _Va Vi Va Va Vp _ Vi _ Ro
- = ——— 4+ — _ = — + IS Vb—i
Ry R1 Rz Rz Ry R2 R2 R3 R
R R
2 3
Vs, 1 |
Va R, 1 1) °
Ve Va Vs R, 'S v "2, R,
s 'a _‘a "2 2 "a V= 2 73 V =46V
Ri Ri R g [l 11 Ry 1.1 1 1
R2 Rs Ri Rz g2l 1} Ry
R R
Va, 2 8
R, °
Vp=——"— V| =-0933V
1 1
. Rz R3
Or, with numbers
node a node b
9-V-V V-V \% V-V V- 0V
360-Q- al- |13 'b "T3la00 24002 P - |Ib | 50mA|-240-Q
40-Q 120-Q 72:Q 120-Q 240-Q
81V -9V ac- 3V a 3V bt 5V a 2V a 2V b = \% bt 48-:mA-240-Q
\ 2Vt Vp+ 12V
\ Va: = 15V bt 6V
2
\ \ /
8LV~ 9:(15V [+ 6V)= 3(L5V p+6V) -3V 515V +6V) <-- substitute for V 5

81V - 135V - 54V = 45V [+ 18V -3V 1+ 75V [+ 30V

81V - 54V - 18V - 30V =21V = 45V - 3V + 75V + 135V , = 225V

-21V
225

Vp= =-0.933-V Vga= 15V +6V =46V

Same as V| of Ex 4 of Thévenin examples:

ECE 2210 Lecture 7 notes p3
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EXx 3 Like Superposition Ex.2

a) Use nodal analysis to find the voltage across R, (V).

You MUST show all the steps of nodal analysis
work to get credit, including drawing appropriate
symbols and labels on the circuit shown.

1) Define ground and nodes:

2) Label unknown node voltages as V, V,, ... and
label the current in each resistor as Iy, I, ....

|
|
VS_ Va Va |
2= 5 Ziig |
Ro Ry, R3 |
Y} I
j*'s - vai+i |
Ry Ry Rg |
|
Vs | |
R, > |
VRE V =48V
a 1 1 a
7+7
R, Rj

3) Write Kirchoff's current equations for each unknown node.

node a:
| 2 + | R3 = | S

4) Replace the currents in the KCL equations
with Ohm's law relationships.

Vg-V, 0-Vg4

= g

+
Ro R3

Usually it's easier to put in the numbers at this point

12V-V 4 0-V,

= 22mA

+
2:kQ 3kQ

Multiply both sides by a value that will clear the denominators.

12V-V, 0-V,
6-kQ- + = 2:mA-6-kQ
2:kQ 3-kQ
3BV -3V, 2V, = 12V
5V, = 24V
_ 24V _
V, = ST =48

Remember, we needed to find the voltage across R, (V,).

b) Find the current through R; (Ig3).

0-Vg4

| =
R3
R3

V R2: V S~ V a:7.2°V

=-1.6°mA actually flows the other way

ECE 2210 Lecture 7 notes p4
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EX 4 Use nodal analysis to find the voltage across Rg (Vgs) and the current through R; (Ig,).

You MUST show all the steps
of nodal analysis work to get
credit, including drawing
appropriate symbols and
labels on the circuit shown.

Vg =12V

node a:

Ve V

R.=300:Q _ of " @,

3 = S
1

12v Va

100.Q  100-Q

+ 63-mA

. Vv
3000-Q- 12v a
100-Q 100-Q

+ 63-mA

360-V - 30-V 4+ 189V

360V + 189V + 36V + 30V
615V
615V

VvV, o=—"
a g

12.v

~ Va*Vsz+Va*Vsz

Va e6v Va eV
500-Q 500 600-Q 600

R, - 100-Q
IR ©
R, ~200.0 R 4 =400-Q
— R = 600-Q
R 3=300-Q CD
~ | g=63mA
Vg =6V s
i
R, =100-Q a Vv,
IR T
R 5 =200-Q Jy R 4 =400-Q
— Vs =12V R 5 =600+Q
R 3=300-Q
~ |S:63'mA
i
= IR + |5

multiply both sides by 3000Q

= |V . \% .
a 6V, "a OVismoa
500-Q 500 600-Q 600

= 6V, 36V+5V - 30V
= BVt 5V 4430V,
= 4V,

V 4=15+V

VRs = Va V=9V

VgV
lgy = = %= 30-mA
R1
ECE 2210 Lecture 7 notes p5
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What if one side of a voltage source isn't ground?

1 + lysy = I3

Ve -V
Sl a+ l)

= |
s
R1

What do you putin for I,5,??

Go to the other side of Vg,.

= | s

Vg -V, 0-Vy
+

R1 Ro

Only problem is that you get the same equation at node b ! —

Where does the second equation come from?

Use something like this: V5= V j+V o

Similar Circuit, but no Vg;.
If the ground is already at the bottom, use the same method as above.

aVa

If you can chose your ground, you can
make life a little simpler.

ECE 2210 Lecture 7 notes p6



DC Notes

ECE 2210/00 A.Stolp

2/8/00, rev 1/28/06

Basic electrical quantities Unit Schematic symbols
Charge, actually moves Coulomb (C
g y Q ) © battery "
Current, like fluid flow | = g Amp (A, mA, UA,...) _+ + \fs
Voltage, like pressure V volt (V, mV, kV,...) ﬂ _T_ Or‘l'_
Resistance R= Y Ohm (Q, kQ, MQ,...) Unknaown current
| part voltage sources CoUrCe
Conductance G= 1 Siemens (S, old unit mho) Node = Al meJFS
R deal wire cannected by wire QF +
Power energy/time P = VI Watt (W, mW, kW, MW,...) ussume ’7 4{ % + not
connected connected
KCL, Kirchhoff's Current Law |247 R=oo R0
lin = 1 oyt Of any point, part, or section |3 L //f// @ @ @
e — -
l | ground, V=0 Volt Amp Ohm
4 meters
. . y&
KVL\,/KlrchEof\f/s Voltage Laé/v | — B [T potentiometer
gain< V drops @round anyloop | + Variable T /T
R T Eﬂ] E:] Resistors .
=" =" capacitor '”dUCtFir
- - or col
-5 I+ -
LD | @ fuse
_ - : : light bulk
Node = all points connected by wire, all at same voltage (potential) ;f
Ohm's law (resistors) "T\; | = \4 4* >‘* speaker  transfarmer
+ R diade LED
= . v —_— T
v R SR R = \4 closed, R=0
I o
open, R=ao0 ¢ !
Switch ransistor
Power PIN = Pyt forresistor circuits Cp amp
OuT P = V:I for everything
_|:|_ _|:|_ 2r NE: f " Maximum power transfer: R| = Rp,
= IR = — forresistors .
cantrlbute -::Ilasuzu-::lte R ! Load = Thevenin's
Resistors S B R Voltage divider : =
. _ Exactly the same _ _ n
series : Req‘ Ri+Ro+Rg+... current through each VRrn= VtOtaJ—R1+R2+R3+___
resistor
parallel : R oy = 1 current divider :
I N T T ' 1
P e - Exactly the same R
Ro R 3 _ n
voltage across each 'rRn = ltota
resistor 1 i+i+
Ri R, Rg

Multiple unknowns:
1. Combine resistors into equivalents where possible.

2. Use superposition if there are multiple sources and you know all the resistors.

3. Use KCL, KVL, & Ohm's laws to write multiple equations and solve.

DC Notes
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DC Notes

Thévenin equivalent

To calculate a circuit’'s Thévenin

equivalent:

1) Remove the load and calculate the
open-circuit voltage where the load
used to be. This is the Thévenin
voltage (V).

2) Zero all the sources. (To zero a
voltage source, replace it with a short.
To zero a current source, replace it with

an open.)

3) Compute the total R,
resistance between T
the load terminals. &

. Vﬂ-, FEL »
(DO NOT include the i
load in this -

resistance.) Thisis

the Thévenin source resistance (Ry,).
4) Draw the Thévenin equivalent circuit

and add your values.

Nodal Analysis

1) If the circuit doesn'’t already have a
ground, label one node as ground (zero
voltage). If the ground can be defined
as one side of a voltage source, that
will make the following steps easier.

2) Label unknown node voltages as V,, V,,
... and label the current in each resistor
asl, I, ...

3) Write Kirchoff’s current equations for
each unknown node.

4) Replace the currents in your KCL
equations with expressions like the one
below.

v, Ry
—" e

|
1

5) Solve the multiple equations for the
multiple unknown voltages

Norton equivalent

To calculate a circuit’s Norton equivalent:

1) Replace the load with a short (a wire)
and calculate the short-circuit current in
this wire. This is the Norton current (l).
Remove the short.

2) Zero all the sources. (To zero a
voltage source, replace it with a short.
To zero a current source, replace it with

an open.)

3) Compute the total
resistance T
between the load L,
terminals. (DO Ry RS
NOT include the 5
load in this -—-d

resistance.) This
is the Norton source resistance (R,).
(Exactly the same as theThévenin
source resistance (Rq)).

4) Draw the Norton equivalent circuit and
add your values.

OR (the more common way)...
1) Find the Thévenin equivalent circuit.
2) Convert to Norton circuit, Ry = Ry, and
In = Vin/Ryp.

Superposition

For circuits with more than 1 source .

1) Zero all but one source. (To zero a
voltage source, replace it with a short.
To zero a current source, replace it with
an open.)

2) Compute your wanted voltage or
current due to the remaining source.
Careful, some may be negative.

3) Repeat the first two steps for all the
sources.

4) Sum all the contributions from all the
sources to find the actual voltage or
current. Watch your signs!




ECE 2210/00  Lecture 8 Notes Basic AC A. Stolp

1/27/08,
2127107

AC stands for Alternating Current as opposed to DC, Direct Current. AC refers to voltages and currents that

change with time, usually the voltage is + sometimes and - at other times. This results in currents with go one

direction when the voltage is + and the reverse direction when the voltage is -.

AC is important for two reasons. Power is created and distributed as AC. Signals are AC.

AC Power
Power is generated by rotating magnetic fields. P Magnetic Flux — ——>
This naturally produces sinusoidal AC waveforms.

It is easier to make AC motors than DC motors.

AC Power allows use of transformers to reduce line losses

Transformers work with AC, but not DC. Transformers can be Iron-core transformer
used to raise or lower AC voltages (with an opposite change of primary secondary
current). This can be very useful in power distribution systems.
Power is voltage times current. You can distribute the same
amount of power with high voltage and low current as you can with
low voltage and high current. However, the lower the current, the
lower the I2R loses in the wires (all real wires have some
resistance). So you'd like to distribute power at the highest
possible voltage. Transformers allow you to do this with AC, but
won't work with DC.

K—D Flux —= |2

N,

ron core

Example:

g i Without transformers
ifr: R,,=1Q IL::100-A

— Ry |

R, VL 120V
|

Ys Ry

Wireloss: Py = I %2R, =20°kW

Power
Plant

Ly =LA In this example, the power lost in the
transmission lines is only 1/10,000th

(J\ RW | what it is without transformers.
i = . R = . 3 i
\(%/ Viw =12 kVR L VL= 120V rhaes why they raise the voltage in

| transmission lines to the point where they
crackle and buzz. That crackle is the sound

Wire loss: Py = | W2-2-RW =2-W of the losses into the surrounding air and can

become significant if the voltage is too high.

ECE 2210/00 Lecture Notes Basic AC pl



Signals ECE 2210/00 Lecture Notes Basic AC p2

A time-varying voltage or current that carriers information. If it varies in time, then it has an AC component.
| |
| Audio, video, position, temperature, digital data, etc...
In some unpredictable fashion
DC is not a signal, Neither is a pure sine wave. If you can predict it, what information can it provide?
Neither DC nor pure sine wave have any "bandwidth". In fact, no periodic waveform is a signal & no periodic
waveform has bandwidth. You need bandwidth to transmit information.

Signal sources . . .
g A transducer is a device which

Microphone Audio
. transforms one form of energy to
Camera Video
. another. Some sensors are
Thermistor or other thermal sensor Temperature
. o transducers, many are not
Potentiometer Position

LVDT (Linear Variable Differential Transformer) Position
Light sensor

Computer

switch

etc...

Most often a signal comes from some
other system.

Periodic waveforms: Waveshape repeats

T = Period = repeat time
1 w
f = frequency, cycles/second f= == — A lamplitude
T 2:Tt V. =
w=radian frequency, radians/sec  ® = 2-Tef e e
A = amplitude 1
DC = average 1 . period, T |
Sinusoidal AC Phase: Ief qg:l _qujg
y(t): A'COS((JL)‘tJr (P) CDS(Q}t)
no phase dng 1 At

voltage: v(t)= V p-cos(oo-t+ 0)
current: i(t)= | p-cos(oo-t+ 0)] Y\
Phase: ¢ = —%-360-deg or: @ = —%-Zﬂ-rad — ! i i \K

Other common periodic waveforms

Volt
proms Square hVolts Valts

L Triangle 1
_time i time T /\time
\/ T Half-Rectified Sine wave

Volts W\/olts __\/olts

time T /t‘wé T ime

Pulse | Sawtooth | Full-Rectified Sine wave

All but the square and triangle waves have a DC component as well as AC.

ECE 2210/ 00 Lecture Notes Basic AC p2
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Now that we have voltages and currents which can be
functions of time, it's time to introduce the capacitor and the
inductor.

Capacitor Lecture Notes

Capacitor

A. Stolp
2/17/03

rev 9/16/09
12/15 & 9/19

e

Fluid Model:

+
+

Electrical - v c like pressure AP =ion >5Driﬁgs
equivalent: d - _
£ = permittivity
insulation
C = E'é = 9 = @ T
d Vv dv flow is like
C current
Units:  farad = Y = aMprsec WF=1+10 ® “farad PF=1-10 *? farad
volt volt
For drawings of capacitors and info about tolerances, see Ch.3 of textbook.
1 't
Basic equations 0 Ve = = i ot
you should know: cC= ~ Cl .
v initial voltage
’.t /
1
|C _ CQVC Or... VC: E cht+Vc(O)
dt 70
t2
Or... Ave = = i oot
. L 1 2 ty
Energy stored in electric field: W = E-C-V c
Capacitor voltage cannot change instantaneously
. 1

parallel: C,y = C1+Cr+Cqo +... series: C_ =

eq 17>2"*>3 | eq 1 1 1

N c e et
S N N 1 -2 *3

Capacitors are the only "backwards" components.

Sinusoids
ic(t) = Ip-cos(w-t)
1 . 11 .
ve(t) = = i ~dt = =2 sin(wt) =
e [ ¢ Cw P C o

indefinite integral \-V — -V -

Steady-state or Final conditions

If a circuit has been connected for "a long
time", then it has reached a steady state
condition. that means the currents and
voltages are no longer changing.

li-I p-cos(m-tf 90-deg)

Voltage "lags" current,
makes sense, current
has to flow in first to
charge capacitor.

d . d
Vv~ =0 i = C—~v =0
dat © ¢ dat ©

no current means it looks like an open

ECE 2210/00

"long time"

Capacitor / Inductor Lecture Notes pl
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Example

The voltage across a 0.5 pF capacitor is shown below. Make an accurate drawing of the capacitor current. Label
the y-axis of your graph (I've already done the time-axis).

The accuracy of your plot at 0, 2, 6, and 8 ms is important, so calculate those values and plot or label them
carefully. Between those points your plot must simply be the correct shape.

C . =05-puF
H The curve is 2™ order
! 1-2ms: ic = chV - 0.5-pF-—’4'V =—1°+mA
' At 2:ms
: 2ms - 6ms: Initial slope is zero and the final
| slope is positive, so the current
V(1) o — 7 £ 5 t ly must be a triangle that star-ts at
. zero and ends at some height.
Wan time (ms)
1 t
o _ .
. JA\ = =
0
(mA) .ms-hei
N gV = 1 [4-ms height
C 2
| L o height = 8V =2.ma
0o 1 kB 3 4 5 %6 7 8 4-ms
time (ms)
6ms - 8ms: Slope is zero, so the current must
1 be zero.

ECE 2210/00 Inductor Lecture Notes

+

Electrical i v
equivalent: LJ? L

Fluid Model:
_ 2
L= pgN=K

U is the permeability of the inductor core
K is a constant which depends on the inductor geometry

N is the number of turns of wire

rt

i, = L v, dt
. ) L L L
Basic equations _ . d. J o
. VL = L—i L .
you should know: dt ot / initial current
. 1 .
Or.. i =~ v dt+i(0)
L
<0
f.t 2
. 1
Or... Ai, = = v dt
1 L L L
Energy stored in electric field: W, = —L L2 JU1

2
Inductor current cannot change instantaneously

volt-sec
amp

Units:henry ECE 2210/00 Capacitor / Inductor

3 6 Lecture Notes p2
mH = 10°H uH = 10°%H



ECE 2210/00  Capacitor / Inductor Lecture Notes p3 L 1

. T
series: Leg = Lytlorlg +... parallel: Ly Ly Lg
— L,
Ly Ly Ls Ly L,% ng L3§ L.;'::.
rJ
Sinusoids () =1 p-cos(m-t)
d. .
vi(t) = L-&I L = L-w-<fl p-sm(w-t)> = L-wl p-cos(m-t+ 90-deg)
\ 4 \., / Voltage "leads" current, makes
Y Vv
p p sense, voltage has to present to
make current change, so voltage
. comes first.
Resonance Series resonance
07
L .
looks like Parallel resonance
a short at o o—
resonance C
C frequency S L looks like an open at
— -1 resonance frequency
o— Oo— ©
The resonance frequency is calculated the same way for either case:
1 [rad 1 . : w
Wy = () OR.. wg,= If you have multiple capacitors or fo = -0 (Hz2)
N L eqCeq inductors which can be combined. 2-m

Steady-state of Final conditions
If a circuit has been connected for "a long
time", then it has reached a steady state s
condition. that means the currents and
voltages are no longer changing.

. d. .
=i =0 v, = L—i =0 "long time"
dt L™ Tar b
no voltage means it looks like a short
Examples
Ex 1
Find the resonant frequency Lq:=5mH Cq1=6uF
(or frequencies) of the circuit ‘ |
shown (in cycles/sec or Hz). Lq ‘ |
‘, ‘, 1 A
@ Lo :=5-mH Leq"ﬁ L gq=2.5mH
7+7
‘ | Ceq:# Ceq:B-uF
|| 1.1
. N o Ci1 C2
RN S 0, =11547-"F fo = — 2 =1838+Hz
L _.C sec 2-m
€q ~eq

ECE 2210/00  Capacitor / Inductor Lecture Notes p3
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The current through a 0.3mH inductor is shown below. Make an accurate drawing of the inductor voltage.
Make reasonable assumptions where necessary. Label your graph.

L =0.3-mH
. 04T The curve is 2"d order and ends at 8pis
() o3+ /
(A) g'i T 0-2us:  No change in current, so: v = 0
0T 2 \3 ’Ikl 5 /% 7 8 5 10 2us-4us: v = L-ﬂ = O.3-mH-70'6'A =-90°V
01T | . At 2-us
—0.271 ! time (us)
—0.31 ' 4us- 8us: Initial slope is positive and the final slope is
—0.4~+ ' zero, so the voltage must be a triangle that
starts at some height and ends at zero.
vty 7 _ . [
60 + Ai L(t) = — VL(t) ct
L
0
30T )
. | | | . . . 06A = 1 _(4.us.he|ght>
0o 1 kb 3 5 6% 7 8 9 10 0.3-mH 2
301 time (us) .
) height = 06-A.03MH2 _ g0y,
60T 4“3
—90+----- 8us- 10ps: No change in current, so: v = 0
Ex 3 Given a voltage, find the current, L = 4-mH DT v
1 f2-us 151 volts
A (1) = = 20-V dt =5°*mA
L 1.us 101 _
. ~8.s sl _lL(t) mA
- -10V dt + 5:mA =-5°*mA \
L ! | | [l 1 1 1 1 ! ! Il ]
J4-us 01 2 3 p 5 Ns 9 A0 11 12 13 X 15 16 17 J8 19 20
1 "104s 5T time
= V(t) dt +-5-mA (Hs)
L. 8-us 10+
_ 120V-2-ps

- 5mA=0*mA etc...
L 2

Ex 4 The following circuit has been connected as shown for a long time. Find the energy stored in the
capacitor and the inductor.

Redraw:
L :=25mH
_ Vg
_ | =
= . L
‘ \C1:4O-uF I =0.75°A
1 2
W, ==L
| e
— Ve lLRs W =7.031'mJ
V=27V

ECE 2210/00  Capacitor / Inductor Lecture Notes p4 W ::%-c-v & W ¢ =14.58°mJ



Capacitor, Inductor Notes ECE 2210/ 00 Do
Capacitors - 9/13/05
0 coul ampsec 1 t 1 t initial voltage q
C= = faad= 28 = W, - 2 icdt= = ipdtitve(0) ic=cly
volt ot ““c), ), ©°F €™ Tat ©

Energy stored in electric field: W ¢ = %-C-V 02 Capacitor voltage cannot change instantaneously

. _ 1

parallel: Cgq = Cq+Cp+Cg+. .. series: Cgq = T 1
! Ty

C1 C2 C3

c1+cz+ T G
Steady-state sinusoids: . 4{ H }74{ }7_ t: :F

Impedance: Z= Lt = Current leads voltage by 90 deg
jrwC wC
Inductors ¢ ¢ -
volt-sec 1 _ initial current d
henry = |L = — VLdt: — VLdt+|L(O) VL— LflL
amp - L, 0 dt
Energy stored in magnetic field: W = %-L-I L2 Inductor current cannot change instantaneously
. _ _ _ 1
series: Leq = Lit+tLlotLlg +... parallel: Leq =1 1
~ T —+—+
it il i L, Ly
Steady-state sinusoids: 3
Impedance: Z | = j.wrL Currentlags voltage by 90 deg ;
RC and RL first-order transient circuits Tt t
For all first order transients: vy (t) = Vy (%) + <vx(0)— vX(oo)>-e N iy (1) = i y(»)+ <i x(0) i X(oo)>.e
Find initial Conditions (vc and/or i)

Find conditions just before time t = 0, vc(0-) and ii(0-). These will be the same just after time t =0, vc(0+) and
i_(0+) and will be your initial conditions. (If initial conditions are zero: Capacitors are shorts, Inductors are opens.)
Use normal circuit analysis to find your desired variable: vy (0) or iy(0)

Find final conditions ("steady-state" or "forced" solution)
Inductors are shorts Capacitors are opens Solve by DC analysis vy () or i y()

. Curves ;
RC Time constant = 1T = RC - . .
Vi + | typical discharging
charge \ VAt
- + 1 ve(t) 37%-] c)
N e R <$vg 63% | | typical charging 4
Vin |Snrga _ £ . | L |
e it 37% . 0 1 2--73 ;_'”4 t t'5
r— 4 N _ A4 - ime constants
C + y ~. i(OR = vig(®) -37%
— c | | S~ . | 1 iR vR(t)
0 1 2 3 4 '5 0
T/
time constants ’
. L -
RL Timeconstant = 1 = — -
R Ving - \
increasing field - 4
- + i - i(OR = vig(®) AN typical decreasing field
R 63% ‘ 37% AN
Vip [ decroasing VR °1 typical increasing field i Sol MR =vR()
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Circuit Transients

1.1 Introduction
Transient: A transient is a transition from one state to another. If the voltages and currents in a circuit do not
change with time, we call that a "steady state". In fact, as long as the voltages and currents are steady AC
sinusoidal values, we can call that a steady state as well. Up until now we've only discussed circuits in a
single steady state But what happens when the state of a circuit changes, say from "off" to "on"? Can the
state of the circuit change instantaneously? No, nothing ever changes instantaneously, the circuit state will
go through some transition from the initial state, "off" to the final state, "on" and that change will take some
amount of time. The same is true in mechanical systems. If you want to change the velocity of a mass or
the level of fluid in a tank or the temperature of your coffee, that transition from one state to another will take
some time.

1 g =

1 ——
sl 0.5+
06T i

04+
—0.5

02+
0 Fl F2 F3 ; 7 }5 —1-

. . time
Simple exponential curve An exponential buildup of a sine wave

The drawings on this page show some typical transients that can occur when a circuit is first turned on. The
initial state of all the waveforms is 0. The final state is either 1 or a sine wave with an amplitude of 1. Notice
that in all four cases the transient effects decay exponentially and that all four waveforms have pretty nearly
reached their steady-state values by the end of the graph.

2 2
‘\ ‘\
1571 b N 15—+ s~
T — e
o5+ /.-° o5/ -7
/, /,
; 5 ;3 : | s ; 5 ;3 : |
0 1 4 .. 5 1 4 . 5
time time
Overshoot Ringing

Transient analysis: Needless to say, the analysis of these transients is a bit more involved than the steady
state. In fact, it usually involves two steady state analyses just to find the initial and final states of the circuit,
and then you still need to figure out what happens in between.

Transients are not instant because capacitors and inductors in the circuit store energy, and moving the energy
into or out of these parts takes some time. The voltage-current relationships of capacitors and inductors are
differential equations, so transient analysis will involve solving differential equations. But don't panic, you'll
learn some nice tricks and techniques for dealing with these equations— tricks and techniques that you can
use in any engineering field, not just EE. Actually, all that phasor stuff you used with AC circuits was also a
trick to simplify the differential equations, unfortunately, that trick only works for sinusoids in steady state.

DC circuits with only resistors also experience transients, but these are due to non-ideal capacitance and
inductance of the parts and wires that we haven't considered before. These transients happen so fast that we
won't worry about them.

Transients p. 1.1



Importance: So why are transients important?

Two reasons really. DC and steady-state AC are Printer Design

fine for moving and using electrical power, but Lets think about some of the transients and signals
sometimes you need to turn them on and off and invalved with moving a print head and putting ink on a
you may need to know what happens at those page of paper.

times. That need turns out to be relatively rare and

probably couldn't justify the time we'll spend Airst, there's the mechanical system to move the print
studying transients. It's signals processing and head. How quickly does the movement respond to an

electrical signal sent to the mator? How powerfu do those
signals have to be? Does it have a naturd frequency
where it might vibrate of oscillate? These are all questions
for the transient analysis of the mechanical system.

control systems really drive our study of transients.

Signals are electrical voltages and currents that
carry information. The information could be audio or
video or the information might be about the position
or speed of mechanical parts, or about the
temperature or level of fluids or chemicals or

The electrical circuit would take a signal from some sensor
that indicates the position of the print head and, using
other information about where the next character should be

practically anything you can imagine. To carry printed, send the right signals to the motar. You'd use
information signals have to change in some way transient analysis to make sure that it could hande any
that we can't predict and we'll need to have some combination of inputs without overshooting the pasition ar
idea how a circuit will respond to those changes. osdillating or going too sloamdy. Besides this, the electrical
Changes are transients. However, since these system may have to compensate for properties of the
changes can't be known beforehand we usually find mechanical system.

a circuit's response to specific types of inputs and

then draw conclusions about the effectiveness or Finally, there's the system that actually puts the ink on the
stability in the general case. Often the electrical paper, let's say it's anink jet. Transient considerations
circuit is just one part of a larger system that may here would include the time it takes for the print head to
include mechanical, hydraulic, or thermal systems. heat the ink to the point where it spits a bubble and how
See box. that should all be timed with the head movement to place

that bubble on the paper at just the right place.

1.2 First-order transients

Analysis of a circuit with only one capacitor or one inductor results in a first-order differential equation and
the transients are called first-order transients.

Series RC circuit, traditional way: Look at the circuit at right. It shows a
capacitor and a resistor connected to a voltage source by way of a switch
that is closed at time t=0. Before the switch is closed the current i(t) and the ;
voltage vg are both O, but the voltage v is unknown. Remember a capacitor —L 'I(tj
is capable of storing a charge, so we don't know what its charge might be —
unless we or can measure it or its is given. I'll call it the initial voltage (v(0)). +
Because the voltage across a capacitor cannot change instantaneously, the — v
voltage across the capacitor just after the switch closes must be the same
as it was just before the switch closes.

Now we just have to apply the basic circuit laws t
Vi VRt Ve ilR+ve = i-R+é- icdt  Making the obvious substitution.
v - 00

The next step here would be to differential both sides of the equation, but if you're a little more clever, there's
an easier way, check this out:

Make this substitution instead i=ic = C-j—vc, to get Vv
t
Waa-laa, no integration. Always try to write your differential equations without integrals, it will eliminate
one more source of mistakes. We now have a differential equation in terms of v¢. If v¢ isn't the variable we
want to find in our analysis then we can always go back to the circuit later and find the current or the
voltage v by simple circuit analysis after we've found v..

d
in= RC—Vver+vVv
in dt cT™'cC

Transients p. 1.2



So now we have to solve the differential equation. Recall from your differential equations class the that first
order differential equations are always solved by equations of the following form.

Standard first order differential equation answer: ve(t) = A+ B.e
And, by differentiation: j—vc = B-se™
t

Substitute these back into the original equation:
Vi RCviive = RCBse™: (A+Be®) = RCBse+ B A
dt

We can separate this equation into two parts, one which is time dependent and one which is not. Each
part must still be an equation.

Time independent (forced) part: Vin= A, A= V= final conditon = v (=)
Time dependent (transient) part: 0 = RCBse'y B |
Divide both sides by B-e' to get 0=RCs+1, s = t_ 1 , Wwhere 1T = RC

7 R-C_ T
This Tis called the "time constant" and will become a rather important little character.
t t

Put the parts we know back into the expression for ve(t) = Vi,+Be RC- V(o) + Be RC

attimet=0: ve(0) = ViptB . B=v(0)-Vi,= ve(0)-v(»)  Bisthe difference between v
at the start and v at the end.
t v
R-C
= ve(@) + (v(0) - V() e
It turns out that all first-order transient solutions will have the same form, just different variables and time constants.

Andfinally:  v(t) = Vi +Be"C

Once you have v(t), you can also find vg(t) and/or i(t) from v(t) if you want.

t t t

t

B-e R-C

R.C R-C
VR(D) = Vgt vt = Vi~ Vi) = Be = Be' = (vC(O)va(oo))e

t t t

‘RC T (Va0 ve(®) me

i(t) = C-d—vc: cB- L eRC e’ = < c ¢ >-e RC
dt R-C R

0| @

Let's plot these and see what they in
actually look like. These graphs ve(t)
show the capacitor charging from
it's initial value to Vin and vy falling
to 0 (same for ig)

The curves are generalized based 1
on the concept of the time
constant, which is why we v(0) ; ; ; ; | time
introduced th time constant. Later 0 t=11 t=21 t=31 t=41 t=51
we'll look at these kind of Vi time constants

curves in greater detail.

Ok, that was fun, but you might 63%
ask at this point if there isn't an J
easier way. Yes, in fact, there
is. We'll look at next. _

VR() =i(OR time constants
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First-Order Transients the Easy Way
Notice in the preceeding analysis that | made a very standard guess at the solution of the differential equation.

Standard first order differential equation answer: ve(t) = A+ B.e

Further notice that A turned out to be the final condition and that B turned out to be the difference between the
initial and final conditions. Finally, remember that | renamed s to -1/1. All of this can be generalized to any
first order system. The answer will always be in this form: final condition
! \ ot

For all first order transients: X(t) = X(o)+ (x(0) - x())-e N

\

initial condition
X(t) could be any variable in any first-order system. It could be a temperature, or a fluid level, or a velocity, but
for us it usually means voltages and currents, so we'll have solutions like these.

t t

--- time constant

V() = vy (@) + [Vx(0)-vy(®))-e " or iy(t) = ix()+ [ix(0)-ix(x))-e’

You find Initial and final conditions from steady-state analysis. That leaves only one thing that you have to find
from the differential equation-- the time constant. If we could only figure out what the time constant of a circuit
(or system) is, then we could almost jump straight to the solution.

The first way to find the time constant is to simply remember it's form for a few cases, like the for RC circuit.
Even if the circuit doesn't look exactly like the standard RC series circuit, Thevenin can help us make it look
that way. Since nearly all of our first order circuits will involve a single capacitor or a single inductor this is not
an impractical method at all.

Another way to find the time constant is to manipulate the differential equation into this particular form

constant= X + T-d—x with no factor in front of the "X" term. Whatever the factor in front of d—x

at at

turns out to be, that will be 1. For the RC circuit the differential equation could be written as

Vi R-C-d—v ctVc notice that the factor in front of d—v C is indeed T.
dt dt

Finally, there is an even easier way based on the LaPlace "s" and s-impedances that we can use in circuits
and equations in place of differentials and integrals. You'll see this last method later, after second-order
transients. (Incidentally, this is the reason that | chose to use an s as the unknown in the exponential.)

Series RL circuit: OK, if it's so easy, let's try it with a series RL circuit.
V

. d. in . Ld.

Vie= Vp+V V= 'R+ L=i — = =i

in R L in dt R R dt

So, the time constant mustbe 1 = % That wasn't too bad. —

Initial condition: i (0) = 0 If the switch was initially open the the current just

before the switch was closed was 0, and inductor current can't change instantly.

V
Final condition: i () = ?m The inductor looks like an short for steady-state DC.

t
Vin

So: iy (t) = iy () + (iy(0)i (m)-é;" " Vin
: Lt =1 +<L L ) = R

0-
R

Ry )
L _ Yin

R,
1-et

Well, that's wasn't too painfull, was it?
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1.3 Initial and Final Conditions
More than once I've said that the initial and final conditions are found from steady-state analysis of the
circuit. It's about time | said how.

Initial Conditions: There are two very important concepts that you use to find the initial conditions.
1) Capacitor voltage cannot change instantaneously, v:(0+) = v(0-).

If you can find the capacitor voltage just before time t = 0 (or whatever starts the transient), then you
know what it is just after time t = 0, v(0+) = v(0-). It cannot change instantaneously. Often you'll
use the methods outlined below to find the final condition of the previous circuit, especially if the
circuit's been in that condition for "a long time". Sometimes you'll have to solve the previous
transient to find the initial condition for the next transient.

If you cannot find the capacitor voltage just before time t = 0 from the circuit, then you'll have to be
told what the initial voltage or charge is. Capacitors can hold a charge for a long time, and can be
moved from one circuit to another without losing the charge. High school electronics students like to
charge capacitors and leave them where they'll shock some poor unsuspecting soul. Of course you'd
never do something as childish as that. Occasionally you may be told what the initial charge is in
terms of coulombs. In that case remember the definition of capacitance.

Q Q

C = = which can be rearrangedto V = =
\Y C
If you have nothing else to go on, assume the initial voltage is 0.

2) Inductor current cannot change instantaneously, i (0+) =i, (0-).

If you can find the inductor current just before time t = 0 (or whatever starts the transient), then you
know what it is just after time t = 0, i (0+) =i (0-). It cannot change instantaneously.

If you cannot find the inductor current just before time t = 0 from the circuit, then assume it's 0. Real
circuits and real inductors always have some resistance so inductor currents just don't last very long
(unless you're dealing with superconductors). Inductors would be very difficult to move from one
circuit to another without losing the current. If you're given an initial current for a problem, realize that
this is probably just to make the problem more interesting, or the initial current comes from previous
analysis.

Do not mix these two concepts up. Capacitor current and inductor voltage can both change instantly
with no problem at all.

Final Conditions: This is steady-state analysis. The steady-state is the final condition.
DC sources
If all the voltage and current sources are DC, then at the final condition the capacitors are all done done
charging so ic = 0, and you can treat them as open circuits. When you find the voltage across the open,
that will be the final capacitor voltage. You've done this sort of thing before to find the energy stored in a
capacitor.

+ + ‘L s .
LV llL(t:. = |L(t}l
Replace capacitors with opens Replace inductors with wires

At the final condition the inductor currents are also no longer changing, so the voltage across an inductor
is 0. Treat inductors as wires (short circuits). When you find the current through the wire, that will be the
final inductor current.

AC sources
Use phasor analysis (jw). Remember that phasor analysis was also called "steady-state AC". One of the
primary assumptions was that the transients had all died out.

E—— jrorL
jwC Transients p. 1.5




1.4 Exponential Curves

Before we go on to second-order transients we should take a closer look at some of the characteristics of
exponential curves. The curves that show up as answers to our transient problems are shown below. The
transient effects always die out after some time, so the exponents are always negative. Just think about what
a positive exponent would mean. That wouldn't be a transient-- that would be exponential growth, like the
population.

/ - Final
// / ° 99% | condition
t
// 1-e' |
/
| / 63% n
/
/
/
— / —
/
/
— / —
Initial 0% e
condition ' ’ ’ ) time constants, 1 ’
Rising Exponential Curve '
Initial
condition |\ 100%
-\ _
\
\
| \ —
\
\
\
— \ 37% ]
\
\\ ot
L \ . -
\ \
5%
\ 0, .
\ 1% Final
0 1 2 3 4

time constants. T > condition
Decaying Exponential Curve ,

Some important features:

1) These curves proceed from an initial condition to a final condition. If the final condition is greater than
the initial, then the curve is said to be a "rising" exponential. If the final condition is less than the initial,
then the curve is called a "decaying" exponential.

2) The curves' initial slope is + 1/t. If they continued at this initial slope they'd be done in one time constant.
3) In the first time constant the curve goes 63% from initial to the final condition.
4) After three time constants the curve is 95% of the way to the final condition.

5) By five time constants the curve is within 1% of the final condition and is usually considered finished.
Mathematically, the curve approaches the final condition asymptotically and never reaches it. In reality, of
course, this is nonsense. Whatever difference there may be between the mathematical solution and the
final condition will soon be overshadowed by random fluctuations (called noise) in the real circuit.
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ECE 2210 First-Order Transient Examples A-Stolp

rev 12/19/15

Ex1 a) Find the expression for v,(t) if the switch is closed at time t = C
- R:=600Q
and v(0) = C. N 1 izo
= e’ Vip 79V —_ S
ve(t) = VC(°°)+<VC(0)*V(;(°°)> e - C:=0.LpyF—
redraw to TERC o T=60s
find v () Omb
— t
— 9V vel®) = 9V (1) = 9V (V- 9v)e O
|
10 T
V) e R e e
b) What is the voltage across the capacitor, C, att=0.1ns ? W) —7.3V —
~100ps |
Ve(25ps) = 9V - 9V.e O =73 o : 1
I
| time (ms)
i | |
¢) When will the current through the resistor be i g '=5-mA? °% 0.1 0.2 0.3 0.4
i g(®)= 0-mA i r(0) = R =15'mA found from drawing capacitor
redraw at 9.v voltage can't
. t=Ctto change instantly
. . . . T . . —_
i (1) = i R()+ <| R(0) i R(oo))-e find ig(0) — 9-V — o
t
= 0-mA+ (15mA- 0-mA)-e '
_t 15
_ 60ps _ . .
= 10.976mA-e = 5-mA atsome time,t i q(1)
10~ —
Solvefor t = -tin[2MA ) =65 925 (MA)
15mA shbe - - i
d) When will the current through the resistor be i g :=20mA? 66 | t|Tne (ms)
) 0.1 0.2 0.3 0.4

Since the initial condition is about 15mA and
the final condition is OmA, iz will never be 20mA.

Ex2 A 1000uF capacitor has an initial charge of 1z volts. A 20-Q resistor is connected across the capacitor at
time t = C. Find the energy dissipated by the resistor in the first 5 time constants.

After 5 time constants nearly all of the energy initially stored in the capacitor will be dissipated by the
resistor. ¢ - 1000pF Vo2V Wi ::é-c-v & W =0.072joule

You can get to this answer just by knowing a little about the exponential curve, but what if you want a more
accurate answer? Then you'll have to find the remaining voltage across the capacitor at t = 5t and subtract

the energy left in the capacitor at that time.
t t

t t ]
ve(0)= 12V v(w)= OV V(1) = vC(oo)+<vC(0)—vC(oo )-eT = 0V+(12V-0V)e = 12Ve "

att=>5Tm vC(S-T):12-V-e’5:81-mV %-C-(Bl-mV)2:3.2811076 *joule
Not surprisingly, this makes no significant difference: WgRp= Wec- %-C-(Bl-mV)2 =0.072joule

ECE 2210 First-Order Transient Examples, p1l



Ex3 The capacitor is initially uncharged. The switch is in the upper =0 R =2:kQ

position from 0 to 2ms and is switched down at time t = 2m:z, R. -2200 o
. . R, :=480Q 1 -220 t=2ms
a) What is the capacitor voltage, v(t) 3
Firstinterval v(0)= 0-V V=24V C-04pF|
— —VpElov
40
Ro R 3:=480Q
Rj
- — V(w) = 24V
Rth "Rt R2tR3
T T = RThC
R3 _
1=1.08ms
1 ot
1.08
ve(h) = vel) + (Ve(0) - ve(w) e T = 24V (0V - 24V)-e T _oms

at2ms 24V - 24V.e F0®M =50 o3y

Second interval, define a new time, t' =t - 2m:¢.

t=2ms: N2 R2

t=0
v~(0)= 20.23V _
i i s L VC(:'ozo: 10V RTh

T ] T T'1:<R2+R3>-C

R3 R3 1=1.08ms
Y VA Ve

t t t—2ms

Vet) = ve(®) + (Ve(0) - ve(w)e T = 10V 4 (20.23V - 10V)-e "™ = 10V 4 10.23V-e **™
30 T T T T
V c(b)
0<t<2ms 72-mS 24—————————————————__—_T_—__—_T—? —
_ _, 1.08ms PR
Vo(t)= 24V -24V-e - 5023V
18— ]
t>2ms *Efgf{ms 3.57ms
V ()= 10V + 10.23V-e 70T I A e .
6 ]
b) When is voltage across the _ " -
capacitor 12V AND getting smaller? 0 I t=0 t=1ms t,= 3ms
0 1 2 3 4 5 6
Ctpo time (ms)
12V = 10V + 10.233V-e *9°™s
VA ot AV t W\
12v-10v_ 22 n[12v-10v)_ [ '12 t 1= -0.96msln 12V 10V _ oo
10.23V e 10.23V 0.96ms 10.23V

2:ms+ 1.57ms=3.57"ms
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Ex4 a) Find the complete expression for i (t).

L:=3mH

R1:20Q W
Before the switch closes, t = 0 ( t=0 =
e I ne
Vi =15V _— R, :=60Q R, :=15Q
iL(0)=0 in’ — 2 3
Final time, t =
—_— 1
R R E
1 23 1 1
1 —t—
— R R3 R2 Rg
R 23: 12-Q
‘ 1
Rh = +R3
1 1 R,3
R, R _ Vpa(®) = Vi =5.625V
1 2 R =30°Q R3 Ri+R o3 in
] VRa(®)
R4 i L(°°) - R3 _ 5.625V —375mA
L Rg 150
T =——
Ry R 3< Rt
T=100-us
t -t _t
i () = i ()4 (i(0)—i (0))e’ = 375mA+ (0-mA- 375mA)-e’®" = 375mA_ 375mA.e!00s
L) = i (@) + ([ [(0)-i(=)e" = + (0-mA- )-e = - e
b) When is the voltage across R, = 10V?
Before the switch closes, t = 0 From drawing above at t =
JW% ST — R23
I VR2(00) = VRE(OO) = — — \V in =5.625V
i(0)=0 Ri+Ra3
T Vin _ %
=187.5mA VRZ(t) = VR2(00)+ <VR2(0)7 VRZ °°)>e
R,+R
1 2 .
R _ B . 100ps
VRy(0) = 2 21125V = 5.625V + (11.25V - 5.625V)-e
R1+Ry = 10V atsome time, solving for that time...
t= tin 10V - 5.625V = 25pis
11.25V - 5.625V
Alternatively, when vp,(t) = 10V, then vgq(t) =5V and i (t)= SV 10V 83.333mA
1 2
t= i 83.333mA - 375mA| _ 255
-375mA

c) What is the v, (t) expression?
t

VL) = V(o) + (V(0) - v (@)]-e "

ot
= 0V 1 (11.25V - 0-V)-e 1001
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Ex5 The switch has been closed for a long
time and is opened (as shown) at time t = C.

a) Find the complete expression for i (t). }é R3=120Q

| g:=180mA
S =
R, ~60Q § L =20mH

Before the switch opens, t = 0-

R 3=120°Q
iy
§R1:200°Q 1
. R3
R, =60°Q i(0)= Ilg———>—— =50mA

1 1 1

7+7 -

Ry Ry, Rj
Final time, t =0 4

R 3 =120"Q

i 1
R 1 =200°Q —
R

: 3
i (©)= lae 2 =112.5mA
J;L 11

R, R
1 Rz
g
R3
R1
R
2 Rtp=R1+R3 RH=320"Q T
R
| | Th

t -t -t
() = i)+ (i [(0)-i (=) e’ = 112.5mA+(50mA- 112.5mA) €™ = 112.5mA - 62.5mAe®25H
b) Find i, attimet=1.4. i (1.41) = 1125mA-625mAe ' = 1125mA- 62.5mA-e >* =97.088mA

c) At time t = 1.4t the switch is closed again. Find the complete expression for i (t'), where t' starts at t = 141.

Be sure to clearly show the time constant.

| -

SR
‘ R2 RThi:1711+R3 Rh=166.22Q
| R1 Rz =t 1= 120.4us
RTh
i (0) = 97.1:mA from partb)
i (0) = 50mA initial value from part a)
L B S -t
() = i (0)+ (i (0)-i(x))-e" = 50mA+(97.1mA- 50mA)- e’ = 50mA+ 47.1mA e
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Complex Numbers ~ EcE2210/00 o
Imaginary 1/12/06
i :ﬁ the imaginary number [rm
Rectangular Form A = a+bj -+
Re(A)= a Im(A)= b b+ ————-—
Polar Form A= A A |
[
Re(A) = A-cos(0) Im(A) = A-sin(0) T =
| FReal
Conversions A =|A|l= a®+Db? 0 = ag(A)= atan b) ' ' ' L—'J,RE
a
a = A-cos(8) b = A-sin(6)
| J-atan@
A= AdP= A-cos(B) + A-sin(8)-j A= a+bj = <«/a2+ b2>-e
Special Cases | =4/ 1= & %% 1oy giovde do%=y gl180deg _ g 1180deg g
J i i .
. j_ée: eJ(9+90deg)
Define a 2" number: rect: D= c+dj polar: D= D-&¢
Equality A= D ifandonlyif a=c and b=d OR A= D and 6 = ¢
Addition and Subtraction A+D = (a+bj)+(c+dj)= (a+c)+ (b+d)j Convert polars to
A-D = (a+bj)-(c+dj)= (a-c)+ (b—-d) rectangular form first

Multiplication and Division

A-D = (a+bj)(c+dj)>= (ac-b-d)+ (bc+ad)]

Rectangular:

A
D

a+ b _ a+ bj c- dj _ ac+t bd bc-ad.
c+dj c+djc—dj e e

Polar: AD = Ad®D.d?= AD.d°?
D DeJ(P D Im
Powers A" = AN = AMcog(nB) + AMsin(nB)]  Convert rectangulars first, usually
Conjugates complex number Conjugate o
A= at b A= a bj A= A
A= Ad® A= Ael®
Fe o T
(2- 6)-¢ (2+6j)-e"
. j- o do eglt
Euler's equation ¢ = cos(a)+j-sin(a) OR: cos(a) = Y, sin(a) =

(@0 = cog(ott 8) +j-sin(wtt B)
Re[ej.(w.t+e)J = cos(wt+ 0)

If we freeze this at time t=0, then we can represent cos(wt+ 6) by P

Calculus Remember, when we write €, we really mean &(“'"%
de = Q(Aé9>: ](JL)AGJGZ (D.A_ej'(e*go'deg)
dt dt
_ j-6 1 e _ 1 j-(6— 90-deg)
Adt = AdPat = T.ad® = 1ad
o % J(L) w

ECE 2210/00 Complex Numbers Notes
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Lecture 12 Introduction to AC Phasors

A.Stolp 10/7/08
rev,

Phasor analysis with impedances, For steady-state sinusoidal response ONLY

Sinusoidal AC

+ amplitude

T = Period = repeat time

f = frequency, cycles / second  f

o = radian frequency, radians/sec ®

period, T

. \, Hime A = amplitude
Phase: ¢ =
or:

Phasor analysis

y(t)

The math is all based on the Euler's equation

BAIN b
Euler's equation ej~o< = cos(Q) + j-sin( Q) cos(a) = Y
OR: . :
o et
sin(0) = o
o j
e (o8] = cos(®'t+ 0)+ j-sin(wt+ 0)
Re{ej(mww = cos(@t+ 0)
If we freeze this at time t=0, then we can represent cos(w-t+6) by e®
Phasor
voltage: v(1) = V -cos(ert+ 9) V(o) = Vp~ej"b
current: i(t) = Ip-cos((o-t+¢) I(w) = Ip~equb

Phasors are used for adding and subtracting sinusoidal waveforms.

Ex1. Add the sinusoidal voltages v {(t)

and  v(t)

using phasor notation, draw a phasor diagram of the

4.5-V-cos(o-t— 30-deg)

At
-—-360-deg
T

At
¢ = -—2-mwrad
T

A-cos(m-t+0)

(O]

27

1
T

lead
+

That's the phasor

Phasors are drawn on a complex plane.

v(t)

three phasors, then convert back to time domain form.

v(t) = 4.5-V-cos(w-t— 30-deg)
V() =4.5V /-30° or:  Vq(n)

and
vo(t) = 3.2-V-cos(w-t+ 15-deg)

V,y(0) =32V /150 or:  Vy(n)

I'm going to drop the () notation from the phasor notation, it gets
cumbersome, but remember that phasors are in the frequency

domain..
\Y% 1 =4.5V /-30° or: A 1 ::4.5.V.e*j'30deg
V, =32V [15° or: V,i= 3.0.y. .l 17dee

ECE 2210/ 00

3.2-V-cos(®-t + 15-deg) vo(t)
7
4.5.v.gl30de
Im
3.2-V-¢ 170 Z-

drawing of the
phasor diagram

Intro to Phasors p1
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Add like vectors, first change to the rectangular form

V =45V [30° 4.5-V-cos(-30-deg) =3.897°V 4.5-V-sin(-30-deg) =-2.25V V1=3.897-225j -V \

} add
V=32V /150 3.2-V-cos(15deg) =3.091+V 3.2-V-sin(15-deg) =0.828°V V5 =3.091 +0.828] *V /
Add real parts: 3.897 1 3.091 =6.988 Va=VitV2
Add imaginary parts: -2.25+0.828 =—1.422 V 3 =6.988 — 1.422j -V sum

Change V 3 back to polar coordinates:

6.988% 1+ 1.422% =7.131 atan| —=*22 ) 11,502 deg
6.988

OR, in Mathcad notation (you' Il see these in future solutions):
‘V3‘ =7.131*V arg<V3> =-11.5deg

Change V 3 back to the time domain:
vi3(t) = vi(t)+vo(t) = 7.13-cos(wt— 11.5-deg)-V

Ex2. Two sinusoidal voltages: v {(t) = 5-V-cos(w-t+ 36.87-deg) and v,(t) = 3.162-V-cos(w-t— 18.44-deg)

a) using phasor notation, find v; = v, - v, Im
. Yolte
V=5V G087 5-V-cos(36.87-deg) =4V
5-V-sin(36.87-deg) =3V I ,
V1=4 +3J vV 0l V-I:
I
. . I Real
V23162V 184400 3.162-V-cos(- 18.44-deg) =3V | Volts
3.162-V-sin(- 18.44-deg) =1 *V o T
. 4 &
\% 2 =3 —] Y . |
V2
Subtract real parts: 4-V—-3-V =1+V -7
. . I
Subtract imaginary parts: 3-V--1-V =4V Volts
4775 A
~ 1 adi - V3 2
V3‘*V17V2 V3—1+4J \Y 1 : ______
OR: ! Vel
Magnitude: A/(1-V)?+ (4-V)? =4.123+V 27 : '
g ' o V3| =4123V | |
. I Real
Angle: atan(?i) =75.96*deg arg<V 3> =7596*deg o ! o I\'b'ts
-2 L4 B
So: vi3(t) = vi(t) - vo(t) = 4.123-V-cos(ort+ 75.96-deg)-V I Yz
_2_.

What about Capacitors and Inductors?

Capacitors and Inductors in AC circuits cause 90° phase shifts between voltages and currents because they integrate and
differentiate. But... integration and differentiation is a piece-of-cake in phasors.

ECE 2210/00 Intro to Phasors p2
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Calculus d [ Al (m.&e)} - e Ao (0t-8) C oAl (@t161-90 deg) C oAl (690 deg)
dt Drop the ot (t=0) to get:
. . . 1 j(6-90deg
J Aced (@t6) dt _ L~A~ej' (@t+6) _ l~A~ej' <w~t+9790deg) = g A€
j-o ®
Impedance (like resistance)
Inductor oLl _ oA (6 '-03~L-{I o (m.&e)} AC impedance
Heas el L= 5L = Fgep - P
in phasor notation ----> Vi(e) = joLl(o) Z; = jolL
Capacitor
) d d i (wt4-6) . { i (0t4-6) }
icr= C—v = C=V e = jo-C|V e
4{ }* C\ dat © e P P
in phasor notation ----> Io(0) = joCV ()
1 1 -j
Velo) = ——I(0) Zeo=— = =)
. jo-C jo-C oC
Resistor
VAV VR = igR Vy(e) = RI(o) Zp = R
You can use impedances just like resistances as long as you deal with the complex arithmetic.
ALL the DC circuit analysis techniques will work with AC.
series: AL HZ 7 -
Zeq = Z1+Z2+Z3 + ...
E C L
Example:
£1=500-Hz d R :=200-Q L :=80-mH
0 =2nf = o :3141.6'; C =0.6-pF j-o-L =251.327j-Q
L =-530.516j *Q
jo-C
Z oq ::R+L+j~m~L = 200-Q- 530.5j-Q+ 251.3-j-Q =200 — 279.2j *Q  rectangular form
jo-C
-279.2-Q
J(200~Q)2+ (279.2:Q)° =343.4+Q atan| 7| 254,38 *deg
200-Q
Zeq = 343.4Q/-54.4° polar form
If: V=12V 0o 1=V = 12V _34045emA [ 0--544=544 deg
Zoq 343.4-Q
I = 3495mA /5440 = 1=20.348 +28.405j *mA
Voltage divider: {
7 Note: —=—j = 1/-900
V=V o ! j
In~ total T i
Z1+Zy+1Z i-0-C 10deg 530.516-¢770%E.0
1 2 3 Eg: VC1:V~J0) 12~V'CJ0deg- 'e
Z oq 343 4.¢ 1342
530.516-Q
122V————— =18.539°V [ 0+-90--54.4=-356 deg

343.4-Q

ECE 2210/00 Intro to Phasors p3 Vo = I83VERE =V =13069 710795 -V
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parallel: 1
i
i i £ iz Example:
1 7| L ﬁ rad
i f :=500-Hz = 2-ef w=3141.6——
Z = ! e
a1 1
-t +...
Z1 Z, Zg4 | |
=1 C_l_ L L :=80-mH
j-orL =251.327j°Q
R:=200Q C:-06HF 1 _ag0108 W1
1 wL Q
=-530.516j *Q
j-w-C
_ -3 1
wC =1.88510 -
Q
; 1 _ 1 _ 1
] 1 1 - i
= T 1ijec L ! 188510%.1 39791031
1 jrorL R wlL 200:Q Q Q
j-w-C
-3 3.
1 . .094- . .
= 510 3* 2.094-10 3’ =170.156 +71.261] *Q
(510° 200410% ). (510%+ 2004103 )
Q
2.93848-10 °
If you want the
answer in polar form, ) ) / .
it's easier to convert 31 31 -3 1 -2.094-10 °-Q
. . 510 =] +[2.094-10 >-—| =54-10 ° — atan ——————— | =-22.72 *deg
the denominator first. J( ) Q) 0 \ 51030
L 1 =185.185°Q
3
54.10 °— -
0 Z eq = 185.2/22.70
If: V=12V 0 - - 2V _6a795-mA | 0-227=-227 deg
Z eq 185.2:Q
| =60— 25.127] *mA
Current divider: 1
P 1
Zn
I = | N ‘L Z
Zn total Eq: |, I J T
1 1 1 g L .
2 2T i+j.w.(:+7l ol
1 2 3 R jrwl
_ 64705 mA.d 22700 1852627900
251.327.d 0%
= 64.795-mA-M =47.747*mA [ 227+-227-90=-90 deg iy =—47.746) *mA
251.327-Q
Duh v =—47.746) *mA
ECE 2210/ 00 Intro to Phasors p4 =
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Ex1. Find Vg, V|, and V in polar phasor form. f:=2-kHz

R 1=500-Q w = 2-ef
V(jw) Vs _
VL @ ) L=8omH  Z| =jwl
f = 2:kHz - 1
Ci=04uF  Zgo=———
jrwC

Z oy “R+jwL+
\/500% + 8067 = 948.491 atan| 228 = 58187 +deg
500
"
find the current: | = 6V-¢ magnitude: e-v
Z eq 948.5:Q

find the magnitude

Vg i=IR 6.326-mA-500-Q =3.163°V

vV =1z 6.326-mA-1005-Q =6.358+V - 58.2-deg + 90-deg = 31.8+dey

Ve-lZg 6.326-mA-(- 199)-Q =-1.259+V  -58.2:deg + (90)-deg = 31.8+deg
OR:  6.326:mA-(199)-Q =1.259-V - 58.2.deg + (- 90)-deg =—148.2 ~deg

w=1257-10" -

Z | =1.005) *kQ

Z ¢ =-0.199 *kQ

=6.326°mA

rad
Sec

=500 +806.366] *Q

z
& —400-+

Z o = 948.5Q / 58.2°

angle: 0-deg- 58.2-deg =—58.2 *deg

| = 6.326mA /-58.20

find the angle
-58.2.deg + 0-deg =—58.2*deg

Vg = 3.163V /-58.2°
V| =6.358V /31.8°

V¢ =-1.250V / 31.8°
V¢ = 1.250V /-148.2°

OR, you can also find these voltages directly, using a voltage divider. I.E. to find V  directly:

_1
\Vi C = JwC .6V - _ _ 1 _ .
R+ jorL+ R(j-wC)+jwL(jjwC)+ 1
j-w-C

- 1 6V

(1- ?LC) +j-wRC
6V (‘4.053- 2513 )

(1- >LC) =-4053

6-V =

_ 6:V-(-4.053- 2513 )

! 6V

R-(j-wC) - w>L-C+ 1

j-wR-C =2513]

40531 2513 ( 4.053 2513 )
6:V-(-4.053 2513 ) = 24.318 - 15.078] *V
(- 4.053)%  2.513% = 22.742

24318 15.078]
22742 22.742

)-V =-1.069 - 0.663] -V

A/ 1.069%+ 0.663° = 1.258

-0.663
-1.069

but this is actually in the third quadrant,
so modify your calculator's results:

31.81-deg -~ 180-deg =—148.19 *deg
= 1.258V /-148.20

magnitude:

angle: atan( ) =31.81-deg

ECE 2210/00 Phasor Examples

(- 4.053)%+ 2.513°
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Lq:=2-mH
; — ‘, 4 rad
Ex2. a)FindZ,. f=25kHz w=2mf =1571-10" ~— o— 00—
Sec
jwl 4 =31.416]*Q
R =200-Q
A = j-wblq+ 1
eq = "Wt 1 C =1pF
+ -
(1 ) Rejwls L, =8-mH
jwl o =125.664jQ
But it's easier to split the problem up 5
Left branch Right branch
z|::i Z | =-63.662Q Z,=jwly,+R  Z, =200+125664] *Q
jrwC
! = j-.wC=0.01571i A 1 ~ -
1 TeRTE o - =3585-10 ° - 2.252:10 ]
— 200 + 125.664-]
j-w-C
. L 1 _ . -3 23 _ -3 —2. 1
denominator: j-wC+—— = 0.01571) + (3.585-10 - 2.252.10 "] ) =3.585°10 ~ +1.346°10 “i —
R‘%j'OOL.Z Q

rectangular division:
1 (3585103~ 1.346.10% )
-3 =2 . -3 L2 .
(3585.10 3+ 1.346.10%] ) (3.585.10 3~ 1.346.10 %} )

358510 % 1.346:10 2]

=18.479 - 69.381j Q

1.9410°4

(358510°%)"+ (1.346.102)° =1.94-10 *

add: j-wlq=31416/-Q 31.416-j + (18.479- 69.381-] ) =18.479 — 37.965] Q
convert to polar (if needed): -31.97 =-64.048 -d Z.,=42.23Q /-64.05°
P ©/18.48% + 37.97° = 42.228 lsag | roReree eq = 42.23Q [04.05
Another Way
Sometimes you might simplify a little before putting in numbers.
. 1 . 1 RiwlL
AR A I = jrwlq+ . rrwlka
eq 11 1 1 Fet 1 . = joly+— :
: + — = +jwC 1+J-oo-C-<R+J-oo-L2>
R+jwloy 1 R+jwlo
jwC R+jwlo

N
|

o = 3L416] 0 (200+ 125.664-))-Q [-0.974- 3.142
0974+ 3142 | 0974 3.142

31416 -Q

= 31.416]

j-Q)L 1%* >
1-w-CLy+jwCR

-Q

, (2004 125,664))-(-0.974 - 3142] )
0.974° + 3.142°

, ((200-(-0974) - 125.664-(-3.142)) + (125.664-(10.974) - 200-3142)j)-Q

0.974° + 3.142

N (200.036288 — 750.796736-j)-Q
10.82084

31416 -Q

\18.49% 1 37.97° = 42.233 aIan( 37'97) =-64.036 *deg

18.49
ECE 2210/00 Phasor Examples p2

= 31.416-j -Q+ 18.486-Q— 69.384:j-Q =18.486 — 37.968] -Q

Zeq =42.23Q /-64.04°

a little roundoff difference



12.v
42.23-Q

Vin

Zeq

. j20deg - _ .
b)Vin"lz'V'eJ Find 1, 1, V¢ L 1= =284.16°mA

284-mA-J 18.479% 1 69.381%Q =20.391-V

84.04-deg + atan - 69.381) _ 8.954-deg
18.479

V =1 1(18.479 - 69.381 )-Q

20.391-V -cos(8.954-deg) = 20.143+V
20.391-V-sin(8.954-deg) =3.174-V

convert to rectangular (if needed):

Another Way

20-deg — (- 64.04)-deg = 84.04+deg

|| 1 =284mA [84.04°

V c =204V /8.95°

You could then use another
voltage divider to find Vz or V.

Ve = 201413174 V

To find Ve 1
directly:
V= Vin -->math --> V - =20.153 +3.178] *V Same but for a little
jrorl g+ 1 roundoff difference
o) Letsfindl , Z,6 =200+125664) *Q 4 2007} 125.664% = 236,202 azan< 12;2“) = 32,142 deg
v \/j-8.95-deg _
| L2~ C = 204V-¢ _ = 204V [8.95-32.1420 =86.4mA /-23.19
zZ, 236.202.0.¢ 3214208y 236.202.Q
Another Way 1
Directly by - Rijwly | 1 | B L1
Current divider: ~ L2~ LT : LT .
jocr jwC(Rjwly)+1 1- W-CLy+j-wCR
R+j-wlo
real part is negative
. /
: 2 .C.
denominator: J <17 w-CL 2> + (xC-R)* =3.289 atan & + 180-deg = 107.224 *deg
1-w-CL 2
, _j-8404-deg _
| L2 = 284 mA ¢ = 284-mA [84.04 - 107.2240 =86.4mA /-23.18°
3,089, (107224 deg 3.289
\
d) Howabout1:? | = =V C-j-oo-C =204V [8.950 0.015708/90c — = 320mA / 98.95°
<J"00'C)
Another Way  Could also be found directly by current divider: | - = wC 11 =320mA/98.95°
J(L)C+ -
R+j-wloy

Something Weird

I is greater than the input current (1, ; ) . What's going on?

The angle between I & | , is big enough that they somewhat cancel each other out (partially resonate).

?
Check Kirchoff's Current Law:

ECE 2210/00 Phasor Examples p3

| o+ 1| p=29.485 +282.569] *mA
yes

= 1| 1 =29.485 +282.569] *mA
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Ex 3. a)Find Z,,. i(t) = 25-mA-cos<

—=

| '=25mA.d 1099 21 Z 1 =(120- 60))-Q

_ Vv, =10V /-20°
j-20-deg

V in =10-V-e @
v "y R =50-Q

/-20 - 10° = 400Q /-30°

377.78¢ 1o-deg)
Sec

7o - " _
LI 25.mA

75|2,=7
Z 1 =346.41 - 200] *Q

Z5=Z1-R-Zq = (346.41- 200 )-Q- 50Q— (120 60})-Q =176.41 - 140} *Q

b) Circle 1: i) The source current leads the source voltage <--- answer, because 10° > -20°,

ii) The source voltage leads the source current

Ex4. a)Find V;, in polar form.
— =

| 7 :=100-mA Z =(80- 60j)-Q oo:zlooo-g 'T LI R Jylzzlool_oomA

— —a_ A R =50-Q
Vin=lz2 Vin=8-6 *V @M 7 | Z:=(80-60j)-Q
)82+ 62=10 aIan<:> =-36.87 *deg |

V,, =10V /-36.9°

b) Find I in polar form. 1 BRI 1oV [-36.90 = ﬂ-cos(—36.9-deg)+j-ﬂ-sin(—36.9-deg) =160 —120i *mA
50-Q 50-Q

I+ =1r+17 = (160- 120 )-mA+ 100-mA =260 - 120 *mA

-120) _ . _ 5 20
/2602+ 1202 = 286.356 aIan( 260) =-24.78deg |+ =286mA [-24.8
c) Circle 1: i) The source current leads the source voltage answer i), -24.8°>-36.9°

ii) The source voltage leads the source current

d) The impedance Z (above) is made of two components in series. What are they and what are their values?
Z =80-60j *Q
Must have a resistor because there is a real part.
R:=Re(Z) R =80°Q

Must have a capacitor because the imaginary part is negative.

Im(Z) =-60°Q = -1 C::i C =16.667 *uF .
wC w-lm(2) _

ECE 2210/00 Phasor Examples p4 O
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Ex 5. The impedance Z =80~ 60j *Q is made of two components in parallel. What are they and what are their values?
Must have a resistor because there is a real part.

Must have an capacitor because the imaginary part is negative.

.- 1 1_ 1 |80+ 60/ ) _ 80+60j _ 80+60j 1
1 ec Z (80~ 60j )-Q |80+ 60] 80° + 60° 10,000 ©
R
! _0oos+0006i -0t = lijwcC
z R
1 = .008-i R ::; R =125-Q
R Q 0080
1 006-Q "
wC = .006— C - C=6uyF R =125-Q
Q w
Positive imaginary parts would require inductors
: |
Ex6. a)Find I, voltage
o = 20000 Z9 | Yz (8- 5DV
Sec
Vi —00.y.d30de R:=250-Q |
| 5:=20-mA.¢ 209
Vin 20V j.30.deg i-30-deg
I = = ¢ = 80-mA-¢ I
R 250-Q )
polar division
[
b) Circle 1. i) V,,leads I, i) Vi,lagsl,
Why? Show numbers: 30 >_ 20 <
¢) Find Z,, in polar form
Convert V,, to rectangular coordinates
20-V-c0s(30-deg) =17.321-V 20-V-sin(30-deg) =10V pol to rect
Vi, =17.321 +10] *V
V 72 =V in— V Z1 V 72 =9.321 +15] v subtract
rect to pol 93212152~ ‘V 22‘ =17.66-V
15
an|—— = ag(V =58.145-d
(9.321) 9V z2) eg
\ :
dv Z, =22 17.68°V _ 883-Q [ 58.145.deg - 20-deg = 38.145deg Z,=883/38.15°Q
5 20-mA

Z 5 =694.436 +545.379] *Q ECE 2210/00 Phasor Examples p5



Ex 7. You need to design a circuit in which the "output” ECE 2210/00 Phasor Examples p6
voltage leads the input voltage (v(t)) by 40° of phase. R :=400:Q

a) What should go in the box: R, L, C?

V= Z hox kY
0 7R+Zbox S v g(t) @ J? e vt

f.=1-kHz

Z hox
- - i (o]
angle of is 40°, —ouef

R+Z box

This can only happen if the angle of Z,  is positive, © =6.283-10° rad
sec

S0 Zy,, is @ inductor

b) Finditsvalue. Vo= Vo= @t v ange SN s 0o axan(‘*"L) = 40°.
R+j-wlL R+j-wlL R
So atan (*)L) =50° %L = tan(50-deg) =1.192 L = R'1'192:75_9-m|-|
w

c) Repeat if the "output” voltage should lag the input voltage (v<(t)) by 20° of phase.

Z
angle of _ “hox is -20°. This can only happen if the angle of Z, , is negative,
R+ Z pox S0 Z,, is & capacitor
1 1 1
Vo= 19C v angle I 2C s 00 aan-®C| = 90- a1
1 1 R wC-R

R+ R+

1 1 1
atan-———| =-70°. = = tan(- 70-deg) =-2.747 C= = =0.145uF

wC-R wCR wR-2.747

Ex 8. Find Vg in the circuit shown. Express it
as a magnitude and phase angle (polar). —

_ i-18-deg
Vgi=6-V-é % |
Ve ﬂ Z,=80Q.g)%0%

z
2 . .
Var——"--V Simple voltage divider _
©'z,.z,'S 2] vge2
| :
\z 2\ -cos(- 60-deg) =40+Q \z 2\ -sin(- 60-deg) =—69.282+Q Z ,=40-69.282 -Q

Z1+2Z,5 = 25Q+35-Q+ 40-Q - 69.282/-Q =65~ 34.282] *Q = 73.486.Q-¢) 7784

Z - 1-60-deg .
2 -Q- .18.
80-Q-e <6-V-é18deg> _ 80Q BV (80— (2781 +18)dey | ooy )14 2deg

V V =

O e - .
~j-27.81-deg
Z1+Z2 73.486-Q-¢ 234860

ECE 2210/00 Phasor Examples p6





