
ECE 2200/10   Lecture 1  Introduction to Electrical Engineering for non-majors A. Stolp
12/30/11 
8/24/152200  = 1/2 semester (Mining, Mat. Sci.)

ECE 2200 Without the Physics is hard, Plan on it!
Bad option: In your last lab session, Start labs Today

2200, Decide today when you want to take the final:
2nd option: With 2210 Exam 2 on 3/4. Start labs next week.

If you don't take the later final you will have to start labs THIS WEEK.

2210  = Full semester (Mechanical, Chemical, etc.) Make sure you are 
registered for the right class  
(2200 or 2210) and that you 
have the right syllabus.

Labs start next week Possible new labs, Th, 10:45 & F, 11:50

2210 Final Friday, April 24, 8:00am 
Subject to change, listen in class 

BOTH
Bring a lab notebook and a U-card with $20 to 1st lab.

Homeworks are due by 5:00 pm in locker ________ (see map for location of lockers)

WARNING: HWs are often due on non-class days.

How to survive
1. Easiest way to get through school is to actually learn and retain what you are asked to learn.

Even if you're too busy, don't lose your good study practices.  
What you "just get by" on today will cost you later.

Don't fall for the "I'll never need to know this" trap.  Sure, much of what you learn you may not use, but 
you will need some of it, some day, either in the current class, future classes, or maybe sometime in 
your career.  Don't waste time second-guessing the curriculum, It'll still be easier to just do your best to 
learn and retain what is covered.

2. Don't fall for the "traps".
Homework answers, Problem session solutions, Posted solutions, Lecture notes.

3. KEEP UP!  Use calendar.

4. Make "permanent notes" after you've finished a subject or section and feel that you know it.

Lecture
Basic electrical quantities Letter used Units Fluid Analogy

Charge, actually moves Q Coulomb (C) m3

Current, like fluid flow I =
Q

sec
Amp (A, mA, µA,...)

m3

sec

Voltage, like pressure V or E volt (V, mV, kV,...) =Pa 1
N

m2

Resistance R =
V

I
Ohm (Ω, kΩ, MΩ,...)

Conductance G =
1

R
Siemens (S, also mho, old unit)

Power = energy/time P = .V I Watt (W, mW, kW, MW,...) W

Symbols (ideal)
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ECE 2210    Lecture 1 notes  p2
I in = I out

KCL, Kirchhoff's Current Law
I 1 I 2 = I 3 I 4I in = I out of any point, part, or section

negative current 
means the direction 
arrow is wrong

Conductors Nonconductors

Massless fluid in our analogy
No gravity effects No Bernoulli effects

Reasonable because:

Electron mass is ..9.11 10 31 kg

Election charge is ..1.6 10 16 C
Negative charge flows 
in negative direction

Battery also obeys KCL
No accumulation of charge anywhere,
so it must circulate around.
Leads to the concept of a "Circuit"

Voltage is like pressure
KVL, Kirchhoff's Voltage Law

V gains= V drops

around any loop
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ECE 2210    Lectures 2 & 3 notes A. Stolp
1/28/06,
9/5/08Ohm's law (resistors)

I =
V

R

V = .I R
 V

R =
V

I
definition of resistance and the unit "Ω"

I R

Power

flow
m3

sec
pressure

N

m3
flow x pressure: .m3

sec

N

m2
= .m

sec

N

1
=

.N m

sec
=

Joule

sec
= W = power

same for electricity power P = .I V =
P IN P OUT

Power dissipated by resistors: P = .V I =
V2

R
= .I2 R

Series Resistors
I

V 1 = .I R 1R 1

V T = V 1 V 2 R eq =
V T

I
=

V 1 V 2

I
=

V 1

I

V 2

I
= R 1 R 2V S

V 2 = .I R 2R 2

R eq = R 1 + R 2

Resistors are in series if and only if exactly the same current  flows through each resistor. 

Parallel Resistors
I T

I 1=
V S

R 1
I 2 =

V S

R 2

V S
R 1 R 2 I T =

V S

R 1
+

V S

R 2
R eq =

V S

I T
=

V S

V S

R 1

V S

R 1

=
1

1

R 1

1

R 2

R eq =
1

1

R 1

1

R 2

R 1 R 2

Resistors are in parallel if and only if the  same voltage  is across each resistor.
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Series and Parallel ECE 2210    Lectures 2 & 3 notes   p2
R 1 R 2

a

R 4R 3 R 5

R 6

R 7 R 8

R 9

R 10 R 11 R 12

b
R 13 R 14

All resistor-only networks can be reduced to a single equivalent, but not always by means of series and parallel concepts. 

Voltage Divider

Exactly the same 
current  through each 
resistor

Voltage divider :
series : R eq = R 1 R 2 R 3 + . . .

V Rn = .V total
R n

R 1 R 2 R 3+ . . .

Current Divider
current divider :

parallel : R eq =
1

1

R 1

1

R 2

1

R 3
+ . . . Exactly the same 

voltage  across each 
resistor

I Rn = .I total

1

R n

1

R 1

1

R 2

1

R 3
+ . . .

May have to combine some resistors first to get series and parallel resistors to use with divider expressions.

I T

V R4 =

V S R 1

I T =
R 2

R 3 I R3
R 4 I R3 =

V R4



Resistors ECE 2210    Lectures 2 & 3 notes   p3
I

small R med R

V _ R =
1

slope
=

∆V

∆I+
big R

------->
I

V
Sources

Battery Cell

Less intuitive, less like sources 
we are used to seeing.

I

I
I S

V

V
V S

Doesn't make sense with 
for ideal voltage sources 
and ideal wires

Doesn't make sense
for ideal current sources

Must have a path for the 
current to flow

Ground

Ground is considered zero volts and is a reference for other voltages. ECE 2210    Lectures 2 & 3 notes   p3



Nodes & Branches ECE 2210    Lectures 2 & 3 notes   p4

Node  = all points connected by wire, all at same voltage (potential)

Branch  = all parts with the same current

ground is a node

Meters
idealy: voltmeter ammeter

open short

Analog meters
voltmeter ammeter Ohmmeter

multimeter

Digital meter
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ECE 2210    Lecture 4 notes     Superposition A. Stolp
9/3/08, 
8/31/09Circuits with more than one Source

P 1
Recall Statics.  To find the reaction at each support, s to each 
load on a beam (or anything else) can be found separately for 
each load.  the total reactions are simply the sum of the 

P 1 P 2 P 2+
W

=

+ W

Superposition
For circuits with more than 1 source.  
1) Zero all but one source.
   (To zero a voltage source, replace it with a short.  To zero a current source, replace it with an open.)
2) Compute your  wanted voltage or current due to the remaining source.  Careful, some may be negative. 
3) Repeat the first two steps for all the sources.
4) Sum all the contributions from all the sources to find the actual voltage or current.  Watch your signs!

V R1 _
+

Ex1. Use the method of superposition to find the 
current I2 (through R2) and the voltage across R1 
(VR1).  Be sure to clearly show and circle your 
intermediate results.

R 1
.100 Ω

I 2
V S

.6 V I S
.18 mA

R 2
.200 Ω

superposition:

Eliminate current source
=...20 mA 100 Ω 2 V

V R1 _
I 2.Vs

V S

R 1 R 2
=I 2.Vs 20 mA +

=R 1 100 Ω
=

.6 V
.300 Ω

20 mA

V R1.Vs
.

R 1

R 1 R 2
V S =V R1.Vs 2 V

=R 2 200 Ω
=V S 6 V

Eliminate voltage source

V R1 _
+

I 2.Is
.

1

R 2

1

R 1

1

R 2

I S =I 2.Is 6 mA
=R 1 100 Ω

I 2
=I S 18 mA

V R1.Is
.I 2.Is R 2 =V R1.Is 1.2 V

=R 2 200 Ω

Add results

I 2 I 2.Vs I 2.Is =I 2 14 mA

V R1 V R1.Vs V R1.Is =V R1 3.2 V
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ECE 2210    Lecture 4 notes  p2
V S

.12 V
Ex2. Use the method of superposition to find the voltage accross 

through R2 and the current through R3.  Be sure to clearly 
show and circle your intermediate results.

R 1
.1 kΩ

+

R 2
.2 kΩ V R2

_
R 3

.3 kΩ

I R3

I S
.2 mA

Eliminate current source
V S

.12 V
R1 is a separate path and doesn't matter.

V R2.Vs
.

R 2

R 2 R 3
V S =V R2.Vs 4.8 V

=R 1 1 kΩ

=R 2 2 kΩ

I R3.Vs
V S

R 2 R 3
=R 3 3 kΩ

=I R3.Vs 2.4 mA

I R3.V

Eliminate voltage source

R1 is shorted and doesn't matter.

V R2.Is
.I S

1

1

R 2

1

R 3

=V R2.Is 2.4 V =R 1 1 kΩ

=R 2 2 kΩ

=R 3 3 kΩ

I R3.II R3.Is
.

1

R 3

1

R 2

1

R 3

I S =I R3.Is 0.8 mA

I S
.2 mA

Add results

V R2 V R2.Vs V R2.Is =V R2 7.2 V

I R3 I R3.Vs I R3.Is =I R3 1.6 mA
ECE 2210    Lecture 4 notes  p2



A. Stolp
1/28/06
9/2/09

ECE 2210    Lectures 5 & 6 notes   Thévenin & Norton Equivalent Circuits 
Model of a Real Source

Real sources are not ideal, but we will model them with two ideal components.

I term I term

RL = 0 (short) V S

R SI L

R S V term + RL = RS  (max power) 

V LR LV S _
RL = ∞  (open) 

0
V term0 V S

R S

R LV S
Note: RL is NOT part of the Thévenin equivalent 
circuit and does not need to be shown.

Thévevin Equivalent Circuit

The same model can be used for any combination of sources and resistors.

R L

R Th

R L
V Th

Thévenin equivalent
To calculate a circuit's Thévenin equivalent:
1) Remove the load and calculate the open-circuit voltage where the load used to be.
    This is the Thévenin voltage (VTh).

2) Zero all the sources.
    (To zero a voltage source, replace it with a short.  To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals.
    (DO NOT include the load in this resistance.)  This is the Thévenin source resistance (RTh).

4) Draw the Thévenin equivalent circuit and add your values. 
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ECE 2210    Lecture 5 notes  p2

I

I L I S

V L run slope =
1

R S
rise

R S R LI S

V
.I S R S

R S R LI S Note: RL is not part of the Norton equivalent 
and does not need to be shown. 

Norton equivalent
To calculate a circuit's Norton equivalent:
1) Replace the load with a short (a wire) and calculate the short-circuit current in this wire.
    This is the Norton current (IN).  Remove the short.

2) Zero all the sources.
    (To zero a voltage source, replace it with a short.  To zero a current source, replace it with an open.)
3) Compute the total resistance between the load terminals.
    (DO NOT include the load in this resistance.)  This is the Norton source resistance (RN).

    (Exactly the same as the Thévenin source resistance (RTh)).

4) Draw the Norton equivalent circuit and add your values.

R N R LI N

OR (the more common way)...
1) Find the Thévenin equivalent circuit.
2) Convert to Norton circuit, then >>>

R N=
R N = R Th and I N =

V Th

R Th
R L

R Th

ECE 2210    Lecture 5 notes  p2



ECE 2210    Lecture 5 notes  p3 Thévevin  & Norton Examples A.Stolp
1/23/03,
1/6/13Ex 1 Find the Thévenin equivalent:

R 1
.40 Ω

V S
.20 V R 2

.120 Ω R L
.60 Ω

To calculate a circuit's Thévenin equivalent:
1) Remove the load and calculate the open-circuit voltage where the load used to be.
    This is the Thévenin voltage (VTh).

=R 1 40 Ω

Find the open circuit voltage:
=R 2 120 Ω

V S
.20 V

V oc = V Th
.V S

R 2

R 1 R 2
=V Th 15 V

2) Zero all the sources.
    (To zero a voltage source, replace it with a short.  To zero a current source, replace it with an open.)

3) Compute the total resistance between the load terminals.
    (DO NOT include the load in this resistance.)
    This is the Thévenin source resistance (RTh).

=R 1 40 Ω

Find the Thevenin resistance:
=R 2 120 Ω

Zero the source
R Th

1

1

R 1

1

R 2

=R Th 30 Ω

4) Draw the Thévenin equivalent circuit and add your values. 

Thevenin equivalent circuit: If the load were reconnected:

=R Th 30 Ω =R Th 30 Ω

=V Th 15 V =V Th 15 V =R L 60 Ω

V L = =.V Th
R L

R Th R L
10 V

I L = =
V Th

R Th R L
166.7 mA

b) Find the Norton equivalent circuit:
P L = =...10 V 166.7 mA 1.667 W

=R 1 40 Ω
Norton equivalent circuit:

=V S 20 V I N
V S

R 1 I N
V Th

R Th
R N R Th

=I N 500 mA =R N 30 Ω
=I N 500 mA
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ECE 2210    Lecture 5 notes  p4
c) Show that the Thévenin circuit is indeed equivalent to the original at several values of RL. 

                    Original Circuit                                   Thévenin Circuit               
R L V L I L I L V L
----- ----- ----- ----- -----

R L
.0 Ω .0 V =

V S

R 1
500 mA =

V Th

R Th R L
500 mA =...500 mA 0 Ω 0 V

Using either numbers: P L = .V L I L = .0 W

R L
.10 Ω R o

1

1

R 2

1

R L

=R o 9.231 Ω I L
V Th

R Th R L
V L

.I L R L

=I L 375 mA =V L 3.75 V

V L = =.V S
R o

R 1 R o
3.75 V

I L = =
V L

R L
375 mA

Using either numbers: P L = =.V L I L 1.406 W

Repeat these 
calculations for a 
number of load 
resistors

V L = I L = I L = V L =

R L
i

.0 Ω

.1 Ω

.10 Ω

.20 Ω

.30 Ω

.40 Ω

.60 Ω

.120 Ω

.240 Ω

.∞ Ω

R o
i

Ω
0

0.992
9.231
17.143

24
30
40
60

80
120

.V S

R o
i

R 1 R o
i

V

0
0.484
3.75

6

7.5
8.571

10
12

13.333
15

V L
i

R L
i

mA

0
483.871

375
300

250
214.286
166.667

100

55.556
0

V Th

R Th R L
i

mA

500
483.871

375
300

250
214.286
166.667

100

55.556
0

.I L
i

R L
i

V

0
0.484
3.75

6

7.5
8.571

10
12

13.333
15

P L
i

W

0
0.234
1.406
1.8

1.875
1.837
1.667
1.2

0.741
0

max

0 0.1 0.2 0.3 0.4 0.5

5

10

15

V Li

I Li

0 30 60 90 120 150 180 210 240

0.5

1

1.5

2

P Li

R Li

Plots
max

volts watts

Power delivered to the load (RL) 

         as a function of RL 

∞  −−>

amps Ω
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ECE 2210    Lecture 5 & 6 notes  p5
Maximum power transfer If I wanted to maximize the power dissipated by 

the load, what RL would I choose?
R S

V S R L P L =
V L

2

R L
= ..

R L

R S R L
V S

2
1

R L
= ..

R L
2

R S R L
2

V S
2 1

R L

= ..
R L

2

R S
2 ..2 R S R L R L

2
V S

2 1

R L
= .

R L

R S
2 ..2 R S R L R L

2
V S

2

= .1

R S
2

R L

.2 R S R L

V S
2

Next step would be to differentiate d

dR L
P L R L ,

set this equal to 0 and solve for RL to find the maximum

Unfortunately this function is a pain to differentiate.  
What if we just differentiate the denominator and find 
its minimum, wouldn't that work just as well?

d

dR L

R S
2

R L

.2 R S R L = .1
R S

2

R L
2

0 1 = 0

0 1 2 3 4

0.1

0.2

0.3
Maximum power transfer happens when: R L = R S

max at RL = RS  Just what we saw in Example 1

This is rarely important in power circuitry, where 
there should be plenty of power and RS should be 
small.  It is much more likely to be important in 
signal circuitry where the voltages can be very 
small and the source resistance may be 
significant -- say a microphone or a radio antenna.

P L R L

R L

R S

All you need to remember  is: R L = R S to maximize the power dissipation in R L

What about efficiency?
P L R L

P S R L
=

.I2 R L

.I2 R S R L

=
R L

R S R L

0 2 4 6 8 10

50

100η (%)

The bigger RL is, the higher the efficiency.

R L

R S
ECE 2210    Lecture 5 & 6 notes  p5



Ex 2 a) Find and draw the Thévenin equivalent circuit. ECE 2210    Lecture 5 & 6 notes  p6
R 1

.1.5 kΩ R 2
.2 kΩ

Find the open circuit voltage:

V S
.18 V

R 1 R 2R 3
.3 kΩ R 4

.1 kΩ R L
.450 Ω

R 3 R 4 V oc = V Th

First do some simplification:

R 1
R eq234

1

1

R 3

1

R 2 R 4

=R eq234 1.5 kΩ V 234
.

R eq234

R 1 R eq234
V S

=V 234 9 V

Divide this voltage between R2 and R4:

R 2

=V 234 9 V R 4 V Th
.

R 4

R 2 R 4
V 234 =V Th 3 V

Find the Thévenin resistance:

Zero the source
R Th

1

1

R 4

1

R 2
1

1

R 1

1

R 3

=R Th 750 Ω

Thévenin equivalent circuit:
=R Th 750 Ω

If the load were reconnected:

=V Th 3 V V L
.V Th

R L

R Th R L
=V L 1.125 V

I L
V Th

R Th R L
=I L 2.5 mA

b) Find and draw the Norton equivalent circuit. R N R Th

I N
V Th

R Th
=I N 4 mA =R N 750 Ω

ECE 2210    Lecture 5 & 6 notes  p6



ECE 2210    Lecture 5 & 6 notes  p7
c) Use your Norton equivalent circuit to find the current through the load.

R N=I N 4 mA
=R L 450 Ω I L

.

1

R L

1

R N

1

R L

I N =I L 2.5 mA

V L
.I L R L =V L 1.125 V

same as above
d) What value of RL would result in the maximum power delivery to RL?

For maximum power transfer R L = =R Th 750 Ω

=R Th 750 Ω
e) What is the maximum power transfer?

=V Th 3 V V L
V Th

2R L
.750 Ω

P L = =
V L

2

R L
3 mW

Ex 3 a) Find and draw the Thévenin & Norton equivalent circuits. R 1
.5 Ω R 2

.15 Ω

V S2
.20 V

V S1
.10 V

R L
.20 Ω

I
V S2 V S1

R 1 R 2
=I 0.5 A

+  2.5V  -

R 1 R 2 =V S2 20 V
=V S1 10 V =R 1 5 Ω =R 2 15 Ω

+
12.5V

R Th
1

1

R 1

1

R 2

-

V Th
.10 V .2.5 V

=R Th 3.75 Ω

Thévenin equivalent circuit: =R Th 3.75 Ω
Norton equivalent circuit:

R N R Th

=V Th 12.5 V
I N

V Th

R Th =R N 3.8 Ω
=I N 3.333 A

b) Use your Thévenin equivalent circuit 
to find the voltage across the load.

=R Th 3.75 Ω

=V Th 12.5 V
=R L 20 Ω

V L = =.
R L

R Th R L
V Th 10.526 V

ECE 2210    Lecture 5 & 6 notes  p7



Ex 4 a) Find and draw the Thévenin & Norton equivalent circuits. ECE 2210    Lecture 5 & 6 notes  p8
R 1

.40 Ω R 2
.120 Ω

Use superposition to find VTh.
I S

.50 mA
V S

.9 V
R L

.72 Ω

R 3
.240 Ω

R 1 R 2 eliminate 
current 
source

V Th.V R 3
=V S 9 V

V Th.V
.

R 2 R 3

R 1 R 2 R 3
V SI 12

R 1 R 2 =V Th.V 8.1 V
eliminate 
voltage 
source

R 3

=I S 50 mA

current divider: I 12
.

1

R 1 R 2

1

R 1 R 2

1

R 3

I S =I 12 30 mA V Th.I
.I 12 R 1 =V Th.I 1.2 V

V Th V Th.V V Th.I =V Th 6.9 V

=R 1 40 Ω =R 2 120 Ω

Find the Thévenin resistance

R Th
1

1

R 1

1

R 2 R 3

=R 3 240 Ω

Thévenin equivalent circuit:
Put the load 
back on

=R Th 36 Ω
I L

V Th

R Th R L
=I L 63.889 mA

=R Th 36 Ω
=V Th 6.9 V =V Th 6.9 V

=R L 72 Ω

V L = =.I L R L 4.6 V

Norton equivalent circuit:
I N

V Th

R Th
R N R Th

=R N 36 Ω
=I N 191.7 mA

ECE 2210    Lecture 5 & 6 notes  p8



ECE 2210    Lecture 5 & 6 notes  p9
Ex 5 A NiCad Battery pack is used to power a cell phone.  When the phone is switched on the battery pack voltage 

drops from 4.80 V to 4.65 V and the cell phone draws 50 mA. V S
.4.80 V V 50

.4.65 V

a) Draw a simple, reasonable model of the battery pack using ideal parts.  
Find the value of each part.

+
R S

V S V 50
.50 mA

.50 mA =R S 3 Ω.4.65 V
.4.8 V

=V S 4.8 V =V S 4.8 V
_

b) The cell phone is used to make a call.  Now it draws 300 mA.  
What is the battery pack voltage now?

I call
.300 mA

=R S 3 Ω V B

=V S 4.8 V

V B= =V S
.I call R S 3.9 V

c) The battery pack is placed in a charger.  The charger supplies 5.10 V.  How much current flows into the 
battery pack?

I chg
=R S 3 Ω V chg

.5.10 V

=V S 4.8 V I chg = =
V chg V S

R S
100 mA

Ex 6 Consider the circuit at right.

a) What value of load resistor (RL) would you 
choose if you wanted to maximize the 
power dissipation in that load resistor.

R S
.8 Ω R LI S

.1 A

R L R S =R L 8 Ω

b) With that load resistor (RL) find the power dissipation in the load.

I L

I S

2
P L = =.I L

2 R L 2 W

ECE 2210    Lecture 5 & 6 notes  p9



ECE 2210    Lecture 5 & 6 notes  p10
Ex 7 R 1

.40 Ω R 2
.12.5 Ω R 3

.10 Ω

I S
.180 mA

V S
.9 V R 4

.90 Ω R L
.30 Ω

Use superposition to find VTh. R 6
.60 Ω

=R 1 40 Ω =R 2 12.5 Ω

current divider:

=R 4 90 Ω
eliminate 
voltage 
source

I R4
.

1

R 2 R 4 R 6

1

R 2 R 4 R 6

1

R 1

I S =I R4 35.556 mA

=R 6 60 Ω V Th.I
.I R4 R 4

=V Th.I 3.2 V
R 246 R 2 R 4 R 6 =R 246 162.5 Ω

=R 1 40 Ω =R 2 12.5 Ω

eliminate 
current 
source

V Th.V
.

R 4

R 1 R 2 R 4 R 6
V S =V Th.V 4 V

=R 4 90 Ω

=R 6 60 Ω
V Th V Th.V V Th.I

=V Th 7.2 V

=R 1 40 Ω =R 2 12.5 Ω =R 3 10 Ω

R Th
1

1

R 4

1

R 1 R 2 R 6

R 3 =R Th 60 Ω
=R 4 90 Ω

=R 6 60 Ω

Thévenin equivalent circuit:

=R Th 60 Ω Put the load 
back on

=R Th 60 Ω
I L

V Th

R Th R L
=I L 80 mA

=V Th 7.2 V =V Th 7.2 V
=R L 30 Ω

V L = =.I L R L 2.4 V

Norton equivalent circuit:
I N

V Th

R Th
R N R Th

=R N 60 Ω
=I N 120 mA
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ECE 2210    Lecture 7 notes   Nodal Analysis
General Network Analysis

In many cases you have multiple unknowns in a circuit, say the voltages across multiple resistors.  Network analysis 
is a systematic way to generate multiple equations which can be solved to find the multiple unknowns.  These 
equations are based on basic Kirchoff's and Ohm's laws.

Loop or Mesh Analysis   You may have used these methods in previous classes, particularly in Physics.  The best 
thing to do now is to forget all that.  Loop analysis is rarely the easiest way to analyze a circuit and is inherently 
confusing.  Hopefully I've brought you to a stage where you have some intuitive feeling for how currents flow in circuits.  
I don't want to ruin that now by screwing around with loop currents that don't really exist.

Nodal analysis  This is a much better method.  It's just as powerful, usually easier, and helps you develop your 
intuitive feeling for how circuits work.

Nodal Analysis

Node = all points connected by wire, all at same voltage (potential)

Ground: One node in the circuit which will be our reference node.  Ground, by definition, will be the zero voltage node.  
All other node voltages will be referenced to ground and may be positive or negative.  Think of gage pressure in a fluid 
system.  In that case atmospheric pressure is considered zero.  If there is no ground in the circuit, define one for 
yourself.  Try to chose a node which is hooked to one side of a voltage source.

Nodal Voltage:  The voltage of a node referenced to ground.  The objective of nodal analysis is to find all the nodal 
voltages.  If you know the voltage at a node then it's a "known" node.  Ground is a known node (duh, it's zero).  If one 
end of a known voltage source hooked to ground, then the node on the other end is also known (another duh).  

Method: Label all the unknown nodes as; "a", "b", "c", etc.  Then the unknown nodal voltages become; Va, Vb, Vc, etc.  
Write a KCL equation for each unknown node, defining currents as necessary.  Replace each unknown current with an 
Ohm's law relationship using the nodal voltages.  Now you have just as many equations as unknowns.  Solve.

Nodal Analysis Steps

1) If the circuit doesn't already have a ground, label one node as ground (zero voltage).
    If the ground can be defined as one side of a voltage source, that will make the following steps easier.
    Label the remaining node, either with known voltages or with letters, a, b, ....
2) Label unknown node voltages as Va, Vb, ... and label the current in each resistor as I1, I2, ....

3) Write Kirchoff's current equations for each unknown node. 
4) Replace the currents in your KCL equations with expressions like this.

V a V b

R 1
Ohm's law relationship 
using the nodal voltages.

5) Solve the multiple equations for the multiple unknown voltages.

Nodal Analysis Examples

Ex 1 Use nodal analysis to find the voltage across R1 (VR1).

R 1
.1 kΩ

V R1
R 2

.2 kΩ
I R3

V S
.10 V R 3

.3 kΩ

I S
.4 mA

1) See next page
Label one node as ground (zero voltage).  By choosing the negative side of a voltage source as ground, the 
upper-left node is known (10V).  Label the remaining nodes, either with known voltages or with letters, a, b, ....

ECE 2210    Lecture 7 notes  p1
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2) Label unknown node voltages as Va, Vb, ... 

and label the current in each resistor as I1, I2, ....
I 1 V a=R 1 1 kΩ

a.10 V.10 V
3) Write Kirchoff's current equations for node a.

V R1 =R 2 2 kΩ
I 1 + I S = I R3 I S I R3

4) Replace the currents in the KCL equations 
with Ohm's law relationships.

=V S 10 V b V b =R 3 3 kΩ

V S V a

R 1
I S =

V a 0

R 3
=I S 4 mA

V S

R 1

V a

R 1
I S =

V a

R 3

5) Solve: Usually it's easier to put in the numbers at this point

V S

R 1
I S =

V a

R 3

V a

R 1

.10 V
.1 kΩ

.4 mA =
V a
.3 kΩ

V a
.1 kΩ

|
|
|
|
|
|
|
|
|
|
| 

Multiply both sides by a value that will clear the denominators. 

V S

R 1
I S = .V a

1

R 1

1

R 3

..3 kΩ
.10 V

.1 kΩ
.4 mA = ..

V a
.3 kΩ

V a
.1 kΩ

3 kΩ

.30 V ...3 kΩ 4 mA = V a
.3 V a

.30 V .12 V = .4 V aV a

V S

R 1
I S

1

R 1

1

R 3

=V a 10.5 V

V a = =
.42 V

4
10.5 V

Either way, you still have to find VR1 from Va.

V R1 V S V a =V R1 0.5 V V b doesn't matter in this case

b) Find the current through R3 (IR3). I R3 = =
V a

R 3
3.5 mA

Ex 2 Same circuit used in Thévenin example, where R4 was RL.

R 1
.40 Ω R 2

.120 Ω

V S
.9 V I S

.50 mA
R 4

.72 Ω

R 3
.240 Ω

1) Define ground and nodes:
.9 V a b

2 unknown nodes  --->  will need 2 equations

ECE 2210    Lecture 7 notes  p2



2) Label unknown node voltages as Va, Vb, ... and

    label the current in each resistor as I1, I2, ....

ECE 2210    Lecture 7 notes  p3

It doesn't matter if these currents are in the correct directions.

I 1 I 2V S V a V b
.9 V 3) Write Kirchoff's current equations for each unknown node.

R 1 R 2 I S
node a I 1 = I 2 + I 4V S R 4 R 3I 4 I 3
node b I 2 = I 3 + I S

4) Replace the currents in your KCL equations with expressions like this.
V a V b

R 1

node a I 1 = I 2 + I 4 node b I 2 = I 3 + I S

V S V a

R 1
=

V a V b

R 2
+

V a
.0 V

R 4

V a V b

R 2
=

V b
.0 V

R 3
+ I S

Now you have just as many equations as unknowns.

5) Solve the multiple equations for the multiple unknown voltages.  Solve by any method you like:

V S

R 1

V a

R 1
=

V a

R 2

V b

R 2
+

V a

R 4

V a

R 2

V b

R 2
=

V b

R 3
+ I S V b =

V a

R 2
I S

1

R 2

1

R 3

V S

R 1

V a

R 1
=

V a

R 2

V a

R 2
I S

.R 2
1

R 2

1

R 3

V a

R 4
V a

V S

R 1

.1

.R 2
1

R 2

1

R 3

I S

1

R 1

1

R 2

1

.R 2
2 1

R 2

1

R 3

1

R 4

=V a 4.6 V

V b

V a

R 2
I S

1

R 2

1

R 3

=V b 0.933 V

Or, with numbers

node a node b

..360 Ω
.9 V V a

.40 Ω
= ..

V a V b

.120 Ω

V a

.72 Ω
360 Ω ..240 Ω

V a V b

.120 Ω
= ..

V b
.0 V

.240 Ω
.50 mA 240 Ω

.81 V .9 V a = .3 V a
.3 V b

.5 V a
.2 V a

.2 V b = V b
...48 mA 240 Ω

\
 \
  \

V a =
.2 V b V b

.12 V

2
= .1.5 V b

.6 V
\ /

.81 V .9 .1.5 V b
.6 V = .3 .1.5 V b

.6 V .3 V b
.5 .1.5 V b

.6 V <-- substitute for V a
.81 V .13.5 V b

.54 V = .4.5 V b
.18 V .3 V b

.7.5 V b
.30 V

=.81 V .54 V .18 V .30 V 21 V = .4.5 V b
.3 V b

.7.5 V b
.13.5 V b = .22.5 V b

V b = =
.21 V

22.5
0.933 V V a = =.1.5 V b

.6 V 4.6 V

Same as VL of Ex 4 of Thévenin examples:ECE 2210    Lecture 7 notes  p3
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.12 V

Ex 3 Like Superposition Ex.2 

a) Use nodal analysis to find the voltage across R2 (VR2).

You MUST show all the steps of nodal analysis 
work to get credit, including drawing appropriate 
symbols and labels on the circuit shown. 

R 1
.1 kΩ

+

R 2
.2 kΩ V R21) Define ground and nodes:

_
2) Label unknown node voltages as Va, Vb, ... and

    label the current in each resistor as I1, I2, ....

R 3
.3 kΩ

I R3

I S
.2 mA

=R 1 1 kΩ
.12 V

I 2I 1
3) Write Kirchoff's current equations for each unknown node.

.0 V
=R 2 2 kΩ node a:

I 2 + I R3 = I S
=R 3 3 kΩ

a
V a 4) Replace the currents in the KCL equations 

with Ohm's law relationships.
I R3

V S V a

R 2

0 V a

R 3
= I S

=I S 2 mA

5) Solve the equation for the unknown voltage. Usually it's easier to put in the numbers at this point

.12 V V a
.2 kΩ

0 V a
.3 kΩ

= .2 mAV S

R 2

V a

R 2

V a

R 3
= I S

|
|
|
|
|
|
|
|
|
|
| 

Multiply both sides by a value that will clear the denominators. 
V S

R 2
=

V a

R 2

V a

R 3
I S

..6 kΩ
.12 V V a

.2 kΩ

0 V a
.3 kΩ

= ...2 mA 6 kΩ

V S

R 2
I S = .V a

1

R 2

1

R 3
.36 V .3 V a

.2 V a = .12 V

.5 V a = .24 V

V a = =
.24 V

5
4.8 V

V a

V S

R 2
I S

1

R 2

1

R 3

=V a 4.8 V

Remember, we needed to find the voltage across R2 (VR2).

V R2 = =V S V a 7.2 V

b) Find the current through R3 (IR3).

I R3 = =
0 V a

R 3
1.6 mA actually flows the other way
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Ex 4 Use nodal analysis to find the voltage across R5 (VR5) and the current through R1 (IR1). From exam 1, F09

You MUST show all the steps 
of nodal analysis work to get 
credit, including drawing 
appropriate symbols and 
labels on the circuit shown. 

R 1
.100 Ω

I R1

R 4
.400 Ω

R 2
.200 Ω

V S1
.12 V

R 5
.600 Ω V R5

R 3
.300 Ω

I S
.63 mA

V S2
.6 V

.12 V =R 1 100 Ω a V a

I R1

=R 2 200 Ω =R 4 400 Ω

=V S1 12 V
=R 5 600 Ω V R5

=R 3 300 Ω
=I S 63 mA

=V S2 6 V

.6 V
node a:

I R1 + I S = I R + I 5

=R 3 300 Ω
V S1 V a

R 1
I S =

V a V S2

R 2 R 3

V a V S2

R 5

.12 V
.100 Ω

V a
.100 Ω

.63 mA =
V a

.500 Ω

.6 V

500

V a
.600 Ω

.6 V

600
multiply both sides by 3000Ω 

=
..3000 Ω

.12 V
.100 Ω

V a
.100 Ω

.63 mA ..
V a

.500 Ω

.6 V

500

V a
.600 Ω

.6 V

600
3000 Ω

.360 V .30 V a
.189 V = .6 V a

.36 V .5 V a
.30 V

.360 V .189 V .36 V .30 V = .6 V a
.5 V a

.30 V a
.615 V = .41 V a

V a
.615 V

41
=V a 15 V

V R5 = =V a V S2 9 V

I R1 = =
V S1 V a

R 1
30 mA
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a V a

What if one side of a voltage source isn't ground?

I VS2I 1 + I VS2 = I 3 V S2R 1
I 1V S1 V a

R 1
+ ? = I S I 3b V b R 3V S1

What do you put in for IVS2??

I 2Go to the other side of VS2. V S1 R 2

V S1 V a

R 1

0 V b

R 2
= I S

Only problem is that you get the same equation at node b !

Where does the second equation come from?

Use something like this: V a = V b V S2

Similar Circuit, but no VS1. 

If the ground is already at the bottom, use the same method as above.

a V a

I VSV S

I 1 I 3
b V b R 3R 1

I 2 R 2

If you can chose your ground, you can 
make life a little simpler.

V S

V S

I 1 I 3
.0 V R 3R 1

I 2 R 2

ECE 2210    Lecture 7 notes  p6 b V b
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Basic electrical quantities Unit Schematic symbols
Charge, actually moves Q Coulomb (C)

Current, like fluid flow I =
Q

s
Amp (A, mA, µA,...)

Voltage, like pressure V volt (V, mV, kV,...)

Resistance R =
V

I
Ohm (Ω, kΩ, MΩ,...)

Conductance G =
1

R
Siemens (S, old unit mho)

Power energy/time P = .V I Watt (W, mW, kW, MW,...)

KCL , K irchhoff's Current Law
I in = I out of any point, part, or section

KVL , K irchhoff's Voltage Law
V gains= V drops around any loop

Node  = all points connected by wire, all at same voltage (potential)

Ohm's law (resistors)
I =

V

R

V = .I R
R =

V

I

Power P IN = P OUT for resistor circuits

P = .V I for everything

Maximum power transfer: R L = R Th
= .I2 R =

V2

R
for resistors

Load = Thevenin's

Resistors Voltage divider :
Exactly the same 
current  through each 
resistor

series : R eq = R 1 R 2 R 3 + . . . V Rn = .V total

R n

R 1 R 2 R 3+ . . .

parallel : R eq =
1

1

R 1

1

R 2

1

R 3

current divider :

+ . . . Exactly the same 
voltage  across each 
resistor

I Rn = .I total

1

R n

1

R 1

1

R 2

1

R 3
+ . . .

Multiple unknowns:
1.  Combine resistors into equivalents where possible.
2.  Use superposition if there are multiple sources and you know all the resistors.
3.  Use KCL, KVL, & Ohm's laws to write multiple equations and solve.

DC Notes ECE 2210 / 00



Thévenin equivalent
To calculate a circuit’s Thévenin
equivalent:
1) Remove the load and calculate the

open-circuit voltage where the load
used to be.  This is the Thévenin
voltage (VTh).

2) Zero all the sources.   (To zero a
voltage source, replace it with a short. 
To zero a current source, replace it with
an open.)

3) Compute the total
resistance between
the load terminals. 
(DO NOT include the
load in this
resistance.)  This is
the Thévenin source resistance (RTh).

4) Draw the Thévenin equivalent circuit
and add your values. 

Superposition
For circuits with more than 1 source .  
1) Zero all but one source.   (To zero a

voltage source, replace it with a short. 
To zero a current source, replace it with
an open.)

2) Compute your  wanted voltage or
current due to the remaining source. 
Careful, some may be negative. 

3) Repeat the first two steps for all the
sources.

4) Sum all the contributions from all the
sources to find the actual voltage or
current.  Watch your signs!

Norton equivalent
To calculate a circuit’s Norton equivalent:
1) Replace the load with a short (a wire)

and calculate the short-circuit current in
this wire.  This is the Norton current (IN). 
Remove the short.

2) Zero all the sources.   (To zero a
voltage source, replace it with a short. 
To zero a current source, replace it with
an open.)

3) Compute the total
resistance
between the load
terminals.  (DO
NOT include the
load in this
resistance.)  This
is the Norton source resistance (RN). 
(Exactly the same as theThévenin
source resistance (RTh)).

4) Draw the Norton equivalent circuit and
add your values.

    OR (the more common way)...
1) Find the Thévenin equivalent circuit.
2) Convert to Norton circuit, RN = RTh and 

IN = VTh/RTh.

I1 ' Va & Vb

R1

Nodal Analysis
1) If the circuit doesn’t already have a

ground, label one node as ground (zero
voltage).  If the ground can be defined
as one side of a voltage source, that
will make the following steps easier.

2) Label unknown node voltages as Va, Vb,
... and label the current in each resistor
as I1, I2, ....

3) Write Kirchoff’s current equations for
each unknown node. 

4) Replace the currents in your KCL
equations with expressions like the one
below.

5) Solve the multiple equations for the
multiple unknown voltages

DC Notes
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ECE 2210 / 00      Lecture 8 Notes          Basic AC

AC stands for Alternating Current as opposed to DC, Direct Current.  AC refers to voltages and currents that 
change with time, usually the voltage is + sometimes and - at other times.  This results in currents with go one 
direction when the voltage is + and the reverse direction when the voltage is -.  

AC is important for two reasons.  Power is created and distributed as AC.  Signals are AC.

AC Power
Power is generated by rotating magnetic fields.  
This naturally produces sinusoidal AC waveforms.  

It is easier to make AC motors than DC motors.

AC Power allows use of transformers to reduce line losses

Transformers work with AC, but not DC.  Transformers can be 
used to raise or lower AC voltages (with an opposite change of 
current).  This can be very useful in power distribution systems.  
Power is voltage times current.  You can distribute the same 
amount of power with high voltage and low current as you can with 
low voltage and high current.  However, the lower the current, the 
lower the I2R loses in the wires (all real wires have some 
resistance).  So you'd like to distribute power at the highest 
possible voltage.  Transformers allow you to do this with AC, but 
won't work with DC.

Iron-core transformer
primary secondary

I 1 I 2

V 1 N 1 N 2 V 2 Z 2

Example:

Without transformers

if: R w
.1 Ω I L

.100 A.120 V

V L
.120 V

Wire loss: P W = =..I L
2 2 R w 20 kW

With transformers
.12 kV

I w
.1 A In this example, the power lost in the 

transmission lines is only 1/10,000th 
what it is without transformers.

I L
.100 A

V w
.12 kV V L

.120 V
That's why they raise the voltage in 
transmission lines to the point where they 
crackle and buzz.  That crackle is the sound 
of the losses into the surrounding air and can 
become significant if the voltage is too high.

Wire loss: P W = =..I w
2 2 R w 2 W
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A time-varying voltage or current that carriers information.  If it varies in time, then it has an AC component.

| 
|

   |
Audio, video, position, temperature, digital data, etc...

In some unpredictable fashion
DC is not a signal,  Neither is a pure sine wave.  If you can predict it, what information can it provide?
Neither DC nor pure sine wave have any "bandwidth".  In fact, no periodic waveform is a signal & no periodic 
waveform has bandwidth.  You need bandwidth to transmit information.

Signal sources
A transducer is a device which 
transforms one form of energy to 
another.  Some sensors are 
transducers, many are not

Microphone Audio
Camera Video
Thermistor or other thermal sensor Temperature
Potentiometer Position
LVDT (Linear Variable Differential Transformer) Position

Most often a signal comes from some 
other system.

Light sensor
Computer
switch
etc...

Periodic waveforms:  Waveshape repeats
T = Period = repeat time

f = frequency, cycles / second f =
1

T
=

ω
.2 π

ω = radian frequency, radians/sec ω = ..2 π f

A = amplitude

DC = average

Sinusoidal AC
Phase:

y( )t = .A cos( ).ω t φ

voltage: v( )t = .V p cos( ).ω t φ

current: i( )t = .I p cos( ).ω t φ

Phase: φ = ..∆t

T
360 deg or: φ = ...∆t

T
2 π rad

Other common periodic waveforms

Square

Triangle

Half-Rectified Sine wave

Pulse Sawtooth Full-Rectified Sine wave

All but the square and triangle waves have a DC component as well as AC.
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Now that we have voltages and currents which can be 
functions of time, it's time to introduce the capacitor and the 
inductor.

Fluid Model:

i CCapacitor
+

+
Electrical 
equivalent:

v C like pressure ∆Ρ
- -

= permittivity

C = .ε A

d
=

Q

V
=

dq

dv flow is like 
current

i C

Units: farad =
coul

volt
=

.amp sec

volt
=µF 1 10 6 farad =pF 1 10 12 farad

For drawings of capacitors and info about tolerances, see Ch.3 of textbook.

Basic equations
you should know:

v C = .1

C
d

∞

t
ti C

C =
Q

V initial voltage
/

Or... v C = .1

C
d

0

t
ti C v C( )0

i C = .C d

dt
v C

Or... ∆v C = .1

C
d

t 1

t 2
ti C

Energy stored in electric field: W C = ..1

2
C V C

2

Capacitor voltage cannot change instantaneously

parallel: C eq = C 1 C 2 C 3 + . . . series: C eq =
1

1

C 1

1

C 2

1

C 3
+ . . .

Capacitors are the only "backwards" components. 

Sinusoids
i C( )t = .I p cos( ).ω t

cos(ωt)
sin(ωt)

v C( )t = .1

C
dti C = ...1

C

1

ω
I p sin( ).ω t = ...1

C

1

ω
I p cos( ).ω t .90 deg

time
Voltage "lags" current, 
makes sense, current 
has to flow in first to 
charge capacitor.

\_     _/ \_     _/
indefinite integral V p V p

Steady-state or Final conditions

If a circuit has been connected for "a long 
time", then it has reached a steady state 
condition.  that means the currents and 
voltages are no longer changing.

+
v C( )∞ = .V S

R 2

R 1 R 2-
"long time"d

dt
v C =  0 i C = .C d

dt
v C =  0

no current means it looks like an open
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Example

The voltage across a 0.5 µF capacitor is shown below.  Make an accurate drawing of the capacitor current.  Label 
the y-axis of your graph (I've already done the time-axis).  

The accuracy of your plot at 0, 2, 6, and 8 ms is important, so calculate those values and plot or label them 
carefully.  Between those points your plot must simply be the correct shape.
C .0.5 µF

0 1 2 3 4 5 6 7 8

2

2

4

6

8
The curve is 2nd order

volts
1 - 2ms: i C = .C

∆V

∆t
= =..0.5 µF

.4 V
.2 ms

1 mA

2ms - 6ms: Initial slope is zero and the final 
slope is positive, so the current 
must be a triangle that starts at 
zero and ends at some height.

v C( )t

time (ms)

0 1 2 3 4 5 6 7 8

1

1

2 ∆v C( )t = .1

C
d

0

t
ti C( )t

i C

(mA)
.8 V = .1

C

..4 ms height

2

height = =..8 V
.C 2

.4 ms
2 mA

time (ms)
6ms - 8ms: Slope is zero, so the current must 

be zero.

ECE 2210 / 00      Inductor Lecture Notes
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Electrical 
equivalent:

Fluid Model: i L v L

-
L = ..µ o N2 K

µ is the permeability of the inductor core

K is a constant which depends on the inductor geometry 

N is the number of turns of wire

i L = .1

L
d

∞

t
tv L

Basic equations
you should know:

v L = .L d

dt
i L initial current

/
Or... i L = .1

L
d

0

t
tv L i L( )0

Or... ∆i L = .1

L
d

t 1

t 2
tv L

Energy stored in electric field: W L = ..1

2
L I L

2

Inductor current cannot change instantaneously

Units: henry =
.volt sec

amp ECE 2210 / 00 Capacitor / Inductor 
Lecture Notes  p2
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L eq =

1

1

L 1

1

L 2

1

L 3
+ . . .

series: L eq = L 1 L 2 L 3 + . . . parallel:

Sinusoids i L( )t = .I p cos( ).ω t
-sin(ωt) cos(ωt)

v L( )t = .L d

dt
i L = ..L ω .I p sin( ).ω t = ...L ω I p cos( ).ω t .90 deg

\_      _/ \_     _/ Voltage "leads" current, makes 
sense, voltage has to present to 
make current change, so voltage 
comes first.

time
V p V p

Resonance Series resonance

L
looks like 
a short at 
resonance 
frequency

Parallel resonance

C
L looks like an open at 

resonance frequency
C

The resonance frequency is calculated the same way for either case: 

ω o =
1

.L C

rad

sec
OR.. ω o =

1

.L eq C eq

If you have multiple capacitors or 
inductors which can be combined.

f o =
ω o

.2 π
( )Hz

Steady-state of Final conditions
If a circuit has been connected for "a long 
time", then it has reached a steady state 
condition.  that means the currents and 
voltages are no longer changing.

i L( )∞ =
V S

R 1

d

dt
i L =  0 v L = .L d

dt
i L =  0 "long time"

no voltage means it looks like a short

Examples
Ex 1

Find the resonant frequency 
(or frequencies) of the circuit 
shown (in cycles/sec or Hz).

L 1
.5 mH C 1

.6 µF

L 1

L 2
.5 mH L eq

1

1

L 1

1

L 2

=L eq 2.5 mH

C 2
.6 µF

C eq
1

1

C 1

1

C 2

=C eq 3 µF

ω o
1

.L eq C eq

=ω o 11547
rad

sec
f o = =

ω o

.2 π
1838 Hz
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Ex 2 ECE 2210 / 00      Capacitor / Inductor Lecture Notes  p4
The current through a 0.3mH inductor is shown below.  Make an accurate drawing of the inductor voltage.  
Make  reasonable assumptions where necessary.  Label your graph.

0 1 2 3 4 5 6 7 8 9 10

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4
L .0.3 mH

The curve is 2nd order and ends at 8µs 
i L( )t

/ 
( )A 0 - 2µs: No change in current, so: v L = 0

2µs - 4µs: v L = .L
∆I

∆t
= =..0.3 mH

.0.6 A
.2 µs

90 V

time  (µs)
4µs - 8µs: Initial slope is positive and the final slope is 

zero, so the voltage must be a triangle that 
starts at some height and ends at zero.

0 1 2 3 4 5 6 7 8 9 10

90

60

30

30

60

90v L( )t
∆i L( )t = .1

L
d

0

t

tv L( )t

.0.6 A = .1
.0.3 mH

..4 µs height

2

time (µs)
height = =..0.6 A

..0.3 mH 2
.4 µs

90 V

8µs - 10µs: No change in current, so: v L = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

5

5

10

15

20Ex 3 Given a voltage, find the current, L .4 mH v L( )t

volts
∆i L( )t = =.1

L
d

.1 µs

.2 µs

t.20 V 5 mA

i L( )t mA

=.1

L
d

.4 µs

.8 µs

t.10 V .5 mA 5 mA

time
.1

L
d

.8 µs

.10 µs

tV( )t .5 mA (µs)

= =.1

L

...20 V 2 µs

2
.5 mA 0 mA etc...

Ex 4 The following circuit has been connected as shown for a long time. Find the energy stored in the 
capacitor and the inductor. 

Redraw:
R 1

.4 Ω

=R 1 4 Ω
R 2

.8 Ω L .25 mH

V S
.30 V

=R 2 8 Ω
R 3

.36 Ω I L
V S

R 1 R 3
=V S 30 V

=R 3 36 Ω
=I L 0.75 A

C .40 µF

W L
..1

2
L I L

2

V C
.I L R 3 =W L 7.031 mJ

=V C 27 V

ECE 2210 / 00      Capacitor / Inductor Lecture Notes  p4 W C
..1

2
C V C

2 =W C 14.58 mJ
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Capacitor, Inductor Notes ECE 2210 / 00
Capacitors

initial voltage

C =
Q

V
farad =

coul

volt
=

.amp sec

volt
v C = .1

C
d

∞

t
ti C = .1

C
d

0

t
ti C v C( )0 i C = .C d

dt
v C

Capacitor voltage cannot change instantaneously
Energy stored in electric field: W C = ..1

2
C V C

2

parallel: C eq = C 1 C 2 C 3 + . . . series: C eq =
1

1

C 1

1

C 2

1

C 3
+ . . .

Steady-state sinusoids:
Impedance: Z C =

1
..j ω C

=
j
.ω C

Current leads voltage by 90 deg

Inductors
initial current

henry =
.volt sec

amp
i L = .1

L
d

∞

t
tv L = .1

L
d

0

t
tv L i L( )0 v L = .L d

dt
i L

Inductor current cannot change instantaneously
Energy stored in magnetic field: W L = ..1

2
L I L

2

series: L eq = L 1 L 2 L 3 + . . . parallel: L eq =
1

1

L 1

1

L 2

1

L 3
+ . . .

Steady-state sinusoids:
Impedance: Z L = ..j ω L Current lags voltage by 90 deg

RC and RL first-order transient circuits

For all first order transients: v X( )t = v X( )∞ .v X( )0 v X( )∞ e

t

τ i X( )t = i X( )∞ .i X( )0 i X( )∞ e

t

τ

Find initial Conditions (vC and/or iL)
Find conditions just before time t = 0,  vC(0-) and iL(0-).  These will be the same just after time t = 0,  vC(0+) and 
iL(0+) and will be your initial conditions.  (If initial conditions are zero:  Capacitors are shorts,  Inductors are opens.) 
Use normal circuit analysis to find your desired variable: v X( )0 or i X( )0

Find final conditions ("steady-state" or "forced" solution)
Inductors are shorts Capacitors are opens Solve by DC analysis v X( )∞ or i X( )∞

0 1 2 3 4 5

0 1 2 3 4 5

Curves
RC Time constant  = τ = RC

Vin typical discharging

vC(t)
vC(t) 37%

63% typical charging

37%
time constants

i(t)R = vR(t) -37%
i(t)R = vR(t)

time constants

0 1 2 3 4 5

0 1 2 3 4 5

RL Time constant  = τ =
L

R Vin

i(t)R = vR(t) typical decreasing field

63% 37%
typical increasing field i(t)R = vR(t)

37%
vL(t)

vL(t) time constants
-37%

time constants

ECE 2210 / 00  Capacitor, Inductor Notes =e 1 0.368 =1 e 1 0.632
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Circuit Transients
1.1 Introduction
Transient: A transient is a transition from one state to another.  If the voltages and currents in a circuit do not 
change with time, we call that a "steady state".  In fact, as long as the voltages and currents are steady AC 
sinusoidal values, we can call that a steady state as well.  Up until now we've only discussed circuits in a 
single steady state  But what happens when the state of a circuit changes, say from "off" to "on"?  Can the 
state of the circuit change instantaneously?  No, nothing ever changes instantaneously,  the circuit state will 
go through some transition from the initial state, "off" to the final state, "on" and that change will take some 
amount of time.  The same is true in mechanical systems.  If you want to change the velocity of a mass or 
the level of fluid in a tank or the temperature of your coffee, that transition from one state to another will take 
some time.

0 1 2 3 4 5

1

0.5

0.5

1

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

time

time
Simple exponential curve

An exponential buildup of a sine wave

The drawings on this page show some typical transients that can occur when a circuit is first turned on.  The 
initial state of all the waveforms is 0.  The final state is either 1 or a sine wave with an amplitude of 1.  Notice 
that in all four cases the transient effects decay exponentially and that all four waveforms have pretty nearly 
reached their steady-state values by the end of the graph.

0 1 2 3 4 5

0.5

1

1.5

2

0 1 2 3 4 5

0.5

1

1.5

2

time time
Overshoot Ringing

Transient analysis:  Needless to say, the analysis of these transients is a bit more involved than the steady 
state.  In fact, it usually involves two steady state analyses just to find the initial and final states of the circuit, 
and then you still need to figure out what happens in between.

Transients are not instant because capacitors and inductors in the circuit store energy, and moving the energy 
into or out of these parts takes some time.  The voltage-current relationships of capacitors and inductors are 
differential equations, so transient analysis will involve solving differential equations.  But don't panic, you'll 
learn some nice tricks and techniques for dealing with these equations— tricks and techniques that you can 
use in any engineering field, not just EE.  Actually, all that phasor stuff you used with AC circuits was also a 
trick to simplify the differential equations, unfortunately, that trick only works for sinusoids in steady state.

DC circuits with only resistors also experience transients, but these are due to non-ideal capacitance and 
inductance of the parts and wires that we haven't considered before.  These transients happen so fast that we 
won't worry about them.

Transients  p. 1.1



Printer Design
Lets think about some of the transients and signals
involved with moving a print head and putting ink on a
page of paper.  

First, there’s the mechanical system to move the print
head.  How quickly does the movement respond to an
electrical signal sent to the motor? How powerful do those
signals have to be?  Does it have a natural frequency
where it might vibrate of oscillate?  These are all questions
for the transient analysis of the mechanical system.  

The electrical circuit would take a signal from some sensor
that indicates the position of the print head and, using
other information about where the next character should be
printed, send the right signals to the motor.  You’d use
transient analysis to make sure that it could handle any
combination of inputs without overshooting the position or
oscillating or going too slowly.  Besides this, the electrical
system may have to compensate for properties of the
mechanical system.

Finally, there’s the system that actually puts the ink on the
paper, let’s say it’s an ink jet.  Transient considerations
here would include the time it takes for the print head to
heat the ink to the point where it spits a bubble and how
that should all be timed with the head movement to place
that bubble on the paper at just the right place.

Printer Design
Lets think about some of the transients and signals
involved with moving a print head and putting ink on a
page of paper.  

First, there’s the mechanical system to move the print
head.  How quickly does the movement respond to an
electrical signal sent to the motor? How powerful do those
signals have to be?  Does it have a natural frequency
where it might vibrate of oscillate?  These are all questions
for the transient analysis of the mechanical system.  

The electrical circuit would take a signal from some sensor
that indicates the position of the print head and, using
other information about where the next character should be
printed, send the right signals to the motor.  You’d use
transient analysis to make sure that it could handle any
combination of inputs without overshooting the position or
oscillating or going too slowly.  Besides this, the electrical
system may have to compensate for properties of the
mechanical system.

Finally, there’s the system that actually puts the ink on the
paper, let’s say it’s an ink jet.  Transient considerations
here would include the time it takes for the print head to
heat the ink to the point where it spits a bubble and how
that should all be timed with the head movement to place
that bubble on the paper at just the right place.

Importance: So why are transients important?  
Two reasons really.   DC and steady-state AC are 
fine for moving and using electrical power, but 
sometimes you need to turn them on and off and 
you may need to know what happens at those 
times.  That need turns out to be relatively rare and 
probably couldn't justify the time we'll spend 
studying transients.  It's signals processing and 
control systems really drive our study of transients.

Signals are electrical voltages and currents that 
carry information.  The information could be audio or 
video or the information might be about the position 
or speed of mechanical parts, or about the 
temperature or level of fluids or chemicals or 
practically anything you can imagine.  To carry 
information signals have to change in some way 
that we can't predict and we'll need to have some 
idea how a circuit will respond to those changes.  
Changes are transients.  However, since these 
changes can't be known beforehand we usually find 
a circuit's response to specific types of inputs and 
then draw conclusions about the effectiveness or 
stability in the general case.  Often the electrical 
circuit is just one part of a larger system that may  
include mechanical, hydraulic, or thermal systems.  
See box.

1.2 First-order transients

Analysis of a circuit with only one capacitor or one inductor results in a first-order differential equation and 
the transients are called first-order transients.

Series RC circuit, traditional way:  Look at the circuit at right.  It shows a 
capacitor and a resistor connected to a voltage source by way of a switch 
that is closed at time t=0.  Before the switch is closed the current i(t) and the 
voltage vR are both 0, but the voltage vC is unknown.  Remember a capacitor 
is capable of storing a charge, so we don't know what its charge might be 
unless we or can measure it or its is given.  I'll call it the initial voltage (vC(0)). 
Because the voltage across a capacitor cannot change instantaneously, the 
voltage across the capacitor just after the switch closes must be the same 
as it was just before the switch closes.

Now we just have to apply the basic circuit laws

V in= v R v C
.i R v C = .i R .1

C
d

∞

t
ti C Making the obvious substitution.

The next step here would be to differential both sides of the equation, but if you're a little more clever, there's 
an easier way, check this out: 

Make this substitution instead i = i C = .C d

dt
v C , to get V in= ..R C d

dt
v C v C

Waa-laa, no integration.  Always try to write your differential equations without integrals, it will eliminate 
one more source of mistakes.  We now have a differential equation in terms of vC.  If vC isn't the variable we 
want to find in our analysis then we can always go back to the circuit later and find the current or the 
voltage vR by simple circuit analysis after we've found vC.
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So now we have to solve the differential equation.  Recall from your differential equations class the that first 
order differential equations are always solved by equations of the following form.

Standard first order differential equation answer: v C( )t = A .B e
.s t

And, by differentiation: d

dt
v C = ..B s e

.s t

Substitute these back into the original equation:

V in= ..R C d

dt
v C v C = ....R C B s e

.s t A .B e
.s t = ....R C B s e

.s t .B e
.s t A

We can separate this equation into two parts, one which is time dependent and one which is not.  Each 
part must still be an equation.

Time independent (forced) part: V in= A , A = V in= final condition = v C( )∞

Time dependent (transient) part: 0 = ....R C B s e
.s t .B e

.s t ,

Divide both sides by .B e
.s t to get 0 = ..R C s 1 , s =

1
.R C

=
1

τ
, where τ = .R C

This τ is called the "time constant" and will become a rather important little character.

Put the parts we know back into the expression for v C( )t = V in
.B e

t
.R C= v C( )∞ .B e

t
.R C

at time t = 0: v C( )0 = V in B , B = v C( )0 V in = v C( )0 v C( )∞ B is the difference between vC 
at the start and vC at the end.

And finally: v C( )t = V in
.B e

t
.R C = v C( )∞ .v C( )0 v C( )∞ e

t
.R C

It turns out that all first-order transient solutions will have the same form, just different variables and time constants. 

Once you have vC(t), you can also find vR(t) and/or i(t) from vC(t) if you want.

v R( )t = V in v C( )t = V in
.B e

t
.R C V in = .B e

t
.R C = .B e

t

τ = .v C( )0 v C( )∞ e

t
.R C

i( )t = .C d

dt
v C = ...C B

1
.R C

e

t
.R C = .B

R
e

t

τ = .
v C( )0 v C( )∞

R
e

t
.R C

V inLet's plot these and see what they 
actually look like.  These graphs 
show the capacitor charging from 
it's initial value to Vin and vR falling 
to 0 (same for iR) 

vC(t)

63%

37%
The curves are generalized based 
on the concept of the time 
constant, which is why we 
introduced th time constant.  Later 
we'll look at these kind of 
curves in greater detail.

v C( )0 time

0 1 2 3 4 5

0 t=1τ t=2τ t=3τ t=4τ t=5τ
V in v C( )0 time constants

Ok, that was fun, but you might 
ask at this point if there isn't an 
easier way.  Yes, in fact, there 
is.  We'll look at next.

63%

37%

vR(t) = i(t)R
time constants
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First-Order Transients the Easy Way  
Notice in the preceeding analysis that I made a very standard guess at the solution of the differential equation. 

Standard first order differential equation answer: v C( )t = A .B e
.s t

Further notice that A turned out to be the final condition and that B turned out to be the difference between the 
initial and final conditions.  Finally, remember that I renamed s to -1/τ.  All of this can be generalized to any 
first order system.  The answer will always be in this form:   final condition

/                        \
---  time constant

For all first order transients: x( )t = x( )∞ .( )x( )0 x( )∞ e

t

τ

\
 initial condition

x(t) could be any variable in any first-order system.  It could be a temperature, or a fluid level, or a velocity, but 
for us it usually means voltages and currents, so we'll have solutions like these.

v X( )t = v X( )∞ .v X( )0 v X( )∞ e

t

τ or i X( )t = i X( )∞ .i X( )0 i X( )∞ e

t

τ

You find Initial and final conditions from steady-state analysis.  That leaves only one thing that you have to find 
from the differential equation-- the time constant.  If we could only figure out what the time constant of a circuit 
(or system) is, then we could almost jump straight to the solution. 

The first way to find the time constant is to simply remember it's form for a few cases, like the for RC circuit.  
Even if the circuit doesn't look exactly like the standard RC series circuit, Thevenin can help us make it look 
that way.  Since nearly all of our first order circuits will involve a single capacitor or a single inductor this is not 
an impractical method at all.

Another way to find the time constant is to manipulate the differential equation into this particular form

constant = X .τ dX

dt
with no factor in front of the "X" term.  Whatever the factor in front of

dX

dt

turns out to be, that will be τ.  For the RC circuit the differential equation could be written as

V in= ..R C d

dt
v C v C notice that the factor in front of d

dt
v C is indeed τ.

Finally, there is an even easier way based on the LaPlace "s" and s-impedances that we can use in circuits 
and equations in place of differentials and integrals.  You'll see this last method later, after second-order 
transients.  (Incidentally, this is the reason that I chose to use an s as the unknown in the exponential.)

Series RL circuit:  OK, if it's so easy, let's try it with a series RL circuit.

v in = v R v L V in= .i R .L d

dt
i

V in

R
= i .L

R

d

dt
i

So, the time constant must be τ =
L

R
That wasn't too bad.

Initial condition: i L( )0 = 0 If the switch was initially open the the current just 

before the switch was closed was 0, and inductor current can't change instantly. 

Final condition: i L( )∞ =
V in

R
The inductor looks like an short for steady-state DC.

So: i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ =
V in

R
.0

V in

R
e

.R

L
t

= .
V in

R
1 e

.R

L
t

Well, that's wasn't too painfull, was it?
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1.3 Initial and Final Conditions
More than once I've said that the initial and final conditions are found from steady-state analysis of the 
circuit.  It's about time I said how.

Initial Conditions: There are two very important concepts that you use to find the initial conditions.

1) Capacitor voltage cannot change instantaneously,  vC(0+) = vC(0-).
If you can find the capacitor voltage just before time t = 0 (or whatever starts the transient), then you 
know what it is just after time t = 0,  vC(0+) = vC(0-).  It cannot change instantaneously.  Often you'll 
use the methods outlined below to find the final condition of the previous circuit, especially if the 
circuit's been in that condition for "a long time".  Sometimes you'll have to solve the previous 
transient to find the initial condition for the next transient.

If you cannot find the capacitor voltage just before time t = 0 from the circuit, then you'll have to be 
told what the initial voltage or charge is.  Capacitors can hold a charge for a long time, and can be 
moved from one circuit to another without losing the charge.  High school electronics students like to 
charge capacitors and leave them where they'll shock some poor unsuspecting soul.  Of course you'd 
never do something as childish as that.  Occasionally you may be told what the initial charge is in 
terms of coulombs.  In that case remember the definition of capacitance.  

C =
Q

V
which can be rearranged to V =

Q

C

If you have nothing else to go on, assume the initial voltage is 0.

2) Inductor current cannot change instantaneously,  iL(0+) = iL(0-).
If you can find the inductor current just before time t = 0 (or whatever starts the transient), then you 
know what it is just after time t = 0,  iL(0+) = iL(0-).  It cannot change instantaneously.

If you cannot find the inductor current just before time t = 0 from the circuit, then assume it's 0.  Real 
circuits and real inductors always have some resistance so inductor currents just don't last very long 
(unless you're dealing with superconductors).  Inductors would be very difficult to move from one 
circuit to another without losing the current.  If you're given an initial current for a problem, realize that 
this is probably just to make the problem more interesting, or the initial current comes from previous 
analysis.

Do not mix these two concepts up.  Capacitor current and inductor voltage can both change instantly 
with no problem at all.

Final Conditions:  This is steady-state analysis.  The steady-state is the final condition.
DC sources

If all the voltage and current sources are DC, then at the final condition the capacitors are all done done 
charging so iC = 0, and you can treat them as open circuits.  When you find the voltage across the open, 
that will be the final capacitor voltage.  You've done this sort of thing before to find the energy stored in a 
capacitor.

Replace capacitors with opens Replace inductors with wires

At the final condition the inductor currents are also no longer changing, so the voltage across an inductor 
is 0.  Treat inductors as wires (short circuits).  When you find the current through the wire, that will be the 
final inductor current.

AC sources
Use phasor analysis (jω).  Remember that phasor analysis was also called "steady-state AC".  One of the 
primary assumptions was that the transients had all died out.

1
..j ω C

..j ω L
Transients  p. 1.5



1.4 Exponential Curves

Before we go on to second-order transients we should take a closer look at some of the characteristics of 
exponential curves.  The curves that show up as answers to our transient problems are shown below.  The 
transient effects always die out after some time, so the exponents are always negative.  Just think about what 
a positive exponent would mean.  That wouldn't be a transient-- that would be exponential growth, like the 
population.

0 1 2 3 4 5

Final
condition

95%
99%

1 e

t

τ

63%

0%
Initial
condition

time

time constants, τ
Rising Exponential Curve

0 1 2 3 4 5

Initial
condition 100%

37%

e

t

τ

5%
1%

Final
condition

time constants, τ
Decaying Exponential Curve

Some important features:
1) These curves proceed from an initial condition to a final condition.  If the final condition is greater than 
the initial, then the curve is said to be a "rising" exponential.  If the final condition is less than the initial, 
then the curve is called a "decaying" exponential.  

2) The curves' initial slope is + 1/τ.  Ιf they continued at this initial slope they'd be done in one time constant. 

3) In the first time constant the curve goes 63% from initial to the final condition.

4) After three time constants the curve is 95% of the way to the final condition.

5) By five time constants the curve is within 1% of the final condition and is usually considered finished.  
Mathematically, the curve approaches the final condition asymptotically and never reaches it.  In reality, of 
course, this is nonsense.  Whatever difference there may be between the mathematical solution and the 
final condition will soon be overshadowed by random fluctuations (called noise) in the real circuit.
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Ex1 a) Find the expression for vc(t) if the switch is closed at time t = 0 
R .600 Ω

and vc(0) = 0 .
t = 0

V in
.9 V

v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ
C .0.1 µF

τ .R C =τ 60 µs
redraw to 
find vc(∞) .0 mA

.9 V v C( )∞ = .9 V
v C( )t = .9 V .( ).0 V .9 V e

t
.60 µs

0 0.1 0.2 0.3 0.4
0

5

10
.9 V

v C( )t
b) What is the voltage across the capacitor, C, at t = 0.1ms ? .7.3 V

(V)

v C( ).25 µs = =.9 V ..9 V e

.100µs
.60 µs 7.3 V

time (ms)

c) When will the current through the resistor be i R
.5 mA?

i R( )∞ = .0 mA i R( )0 = =
.9 V

R
15 mA found from drawing

capacitor 
voltage can't 
change instantly

redraw at 
t = 0+ to 
find iR(0)

.9 V

i R( )t = i R( )∞ .i R( )0 i R( )∞ e

t

τ .9 V .0 V

= .0 mA .( ).15 mA .0 mA e

t

τ

0 0.1 0.2 0.3 0.4
0

5

10

15

= ..10.976mA e

t
.60 µs = .5 mA at some time, t i R( )t

Solve for t = =.τ ln
.5 mA
.15 mA

65.92 µs (mA)

time (ms)
d) When will the current through the resistor be i R

.20 mA ? .66

Since the initial condition is about 15mA and 
the final condition is 0mA, iR will never be 20mA.

Ex2 A 1000 µF capacitor has an initial charge of 12 volts.   A 20-Ω resistor is connected across the capacitor at 
time t = 0.  Find the energy dissipated by the resistor in the first 5 time constants.

After 5 time constants nearly all of the energy initially stored in the capacitor will be dissipated by the 
resistor.

C .1000µF V C
.12 V W C

..1

2
C V C

2 =W C 0.072 joule

You can get to this answer just by knowing a little about the exponential curve, but what if you want a more 
accurate answer?  Then you'll have to find the remaining voltage across the capacitor at t = 5t and subtract 
the energy left in the capacitor at that time.

v C( )0 = .12 V v C( )∞ = .0 V v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ = .0 V .( ).12 V .0 V e

t

τ= ..12 V e

t

τ

at t = 5τ: v C( ).5 τ = =..12 V e 5 81 mV =..1

2
C ( ).81 mV 2 3.28110 6 joule

Not surprisingly, this makes no significant difference: W R = =W C
..1

2
C ( ).81 mV 2 0.072 joule
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Ex3 The capacitor is initially uncharged.  The switch is in the upper 
position from 0 to 2ms and is switched down at time t = 2ms.

R 2
.2 kΩ

t = 0
R 1

.220 Ω
R 3

.480 Ω t = 2ms
a) What is the capacitor voltage, vC(t) 

First interval v C( )0 = .0 V V 1
.24 V

C .0.4 µF
V 2

.10 V

R 2 R 3
.480 Ω

R 1
v C( )∞ = .24 V

R Th R 1 R 2 R 3
τ .R Th C

R 3 =τ 1.08 ms

v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ = .24 V .( ).0 V .24 V e

t
.1.08ms

at 2ms: =.24 V ..24 V e

.2 ms
.1.08ms 20.23 V

Second interval, define a new time, t' = t - 2ms 

R 2 R 2t = 2ms :
t' = 0

v C( )0 = .20.23V
v C( )∞ = .10 V R Tht' = 0

t' = ∞ τ' .R 2 R 3 C

R 3 R 3 =τ 1.08 ms

v C( )t' = v C( )∞ .v C( )0 v C( )∞ e

t'

τ' = .10 V .( ).20.23V .10 V e

t'
.0.96ms = .10 V ..10.23V e

t .2 ms
.0.96ms

0 1 2 3 4 5 6
0

6

12

18

24

30

V C( )t
0 < t < 2ms

V C( )t = .24 V ..24 V e

.2 ms
.1.08ms

.20.23V

t > 2ms .3.57ms
V C( )t = .10 V ..10.23V e

t .2 ms
.0.96ms

b) When is voltage across the 
capacitor 12V AND getting smaller?

t' = 0 t' = 1ms t' = 3ms

time (ms)

.12 V = .10 V ..10.233V e

t 12
.0.96ms

.12 V .10 V
.10.23V

= ln
.12 V .10 V

.10.23V
=

t 12
.0.96ms

t 12= =..0.96ms ln
.12 V .10 V

.10.23V
1.57 ms

e

t 12
.0.96ms

=.2 ms .1.57ms 3.57 ms
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Ex4 a) Find the complete expression for iL(t). L .3 mH
R 1

.20 Ω

Before the switch closes, t = 0- 
t = 0

V in
.15 V R 2

.60 Ω R 3
.15 Ω

iL(0) = 0

Final time, t = ∞  

R 1 R 23
1

1

R 2

1

R 3R 2 R 3

=R 23 12 Ω

R Th
1

1

R 1

1

R 2

R 3

v R3( )∞ = =.
R 23

R 1 R 23
V in 5.625 V

=R Th 30 Ω

R 1 i L( )∞ =
v R3( )∞

R 3
= =

.5.625V

.15 Ω
375 mA

τ L

R Th
R 2 R 3

=τ 100 µs

i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ = .375 mA .( ).0 mA .375 mA e

t
.100µs = .375 mA ..375 mA e

t
.100µs

b) When is the voltage across R2 = 10V?

Before the switch closes, t = 0- From drawing above at t = ∞ 

v R2( )∞ = v R3( )∞ = =.
R 23

R 1 R 23
V in 5.625 V

iL(0) = 0

=
V in

R 1 R 2
187.5 mA v R2( )t = v R2( )∞ .v R2( )0 v R2( )∞ e

t

τ

= .5.625V .( ).11.25V .5.625V e

t
.100µs

v R2( )0 = =.
R 2

R 1 R 2
V in 11.25 V

= .10 V at some time, solving for that time...

t = =.τ ln
.10 V .5.625V

.11.25V .5.625V
25 µs

Alternatively, when vR2(t) = 10V, then vR1(t) = 5V and i L( )t = =
.5 V

R 1

.10 V

R 2
83.333 mA

t = =.τ ln
.83.333mA .375 mA

.375 mA
25 µs

c) What is the vL(t) expression?

v L( )t = v L( )∞ .v L( )0 v L( )∞ e

t

τ
= .0 V .( ).11.25V .0 V e

t
.100µs
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Ex5 The switch has been closed for a long 
time and is opened (as shown) at time t = 0.

a) Find the complete expression for iL(t). 
R 3

.120 Ω

t = 0
R 1

.200 Ω

I S
.180 mA

L .20 mH
R 2

.60 Ω

Before the switch opens, t = 0- 

=R 3 120 Ω

=R 1 200 Ω

=R 2 60 Ω i L( )0 = =.I S

1

R 3

1

R 1

1

R 2

1

R 3

50 mA

Final time, t = ∞  
=R 3 120 Ω

=R 1 200 Ω

i L( )∞ = =.I S

1

R 3

1

R 1

1

R 3

112.5 mA

R 3

R 1

R 2 R Th R 1 R 3 =R Th 320 Ω τ L

R Th
=τ 62.5 µs

i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ = .112.5mA .( ).50 mA .112.5mA e

t
.62.5µs = .112.5mA ..62.5mA e

t
.62.5µs

b) Find iL at time t = 1.4τ . i L( ).1.4 τ = .112.5mA ..62.5mA e

.1.4 τ
τ = =.112.5mA ..62.5mA e 1.4 97.088 mA

c) At time t = 1.4τ the switch is closed again.  Find the complete expression for iL(t'), where t' starts at t = 1.4τ.
    Be sure to clearly show the time constant.

R 3

R 1
R 2 R Th

1

1

R 1

1

R 2

R 3 =R Th 166.2 Ω

τ L

R Th
=τ 120.4 µs

i L( )0 = .97.1mA from part b)

i L( )∞ = .50 mA initial value from part a)

i L( )t = i L( )∞ .i L( )0 i L( )∞ e

t

τ = .50 mA .( ).97.1mA .50 mA e

t'
.120.4 µs = .50 mA ..47.1mA e

t'
.120.4 µs
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Complex Numbers
Imaginary

j = 1 the imaginary number
Rectangular Form A = a .b j

Re( )A = a Im( )A = b

Polar Form A = .A e
.j θ

Re( )A = .A cos( )θ Im( )A = .A sin( )θ

Re
Conversions A = A = a2 b2 θ = arg( )A = atan

b

a

a = .A cos( )θ b = .A sin( )θ

A = .A e
.j θ= .A cos( )θ ..A sin( )θ j A = a .b j = .a2 b2 e

.j atan b

a

Special Cases j 1 = e
..j 90 deg 1

j
= j = e

..j 90 deg =e
..j 0 deg 1 e

..j 180 deg = =e
..j 180 deg 1

.j e
.j θ = e

.j ( )θ .90 deg

Define a 2nd number: rect: D = c .d j polar: D = .D e
.j φ

Equality A = D if and only if a = c and b = d OR A = D and θ = φ

Addition and Subtraction A D = ( )a .b j ( )c .d j = ( )a c .( )b d j
Convert polars to 
rectangular form firstA D = ( )a .b j ( )c .d j = ( )a c .( )b d j

Multiplication and Division .A D = .( )a .b j ( )c .d j = ( ).a c .b d .( ).b c .a d j

Rectangular: A

D
=

a .b j

c .d j
= .a .b j

c .d j

c .d j

c .d j
=

.a c .b d

c2 d2
.

.b c .a d

c2 d2
j

Polar: .A D = ...A e
.j θ D e

.j φ = ..A D e
.j ( )θ φ

A

D
=

.A e
.j θ

.D e
.j φ

= .A

D
e

.j ( )θ φ

Powers An = .An e
..j n θ = .An cos( ).n θ ..An sin( ).n θ j Convert rectangulars first, usually

Conjugates complex number Conjugate

A = a .b j A = a .b j A = A

A = .A e
.j θ A = .A e

.j θ

F =
3 .5 j

.( )2 .6 j e
..j 40 deg

F =
3 .5 j

.( )2 .6 j e
..j 40 deg

Euler's equation e
.j α = cos( )α .j sin( )α OR: cos( )α =

e
.j α e

.j α

2
sin( )α =

e
.j α e

.j α

.2 j

e
.j ( ).ω t θ = cos( ).ω t θ .j sin( ).ω t θ

Re e
.j ( ).ω t θ = cos( ).ω t θ

If we freeze this at time t=0, then we can represent cos( ).ω t θ by e
.j θ

Calculus Remember, when we write e
.j θ , we really mean e

.j ( ).ω t θ

d

dt
A = d

dt
.A e

.j θ = ...j ω A e
.j θ = ..ω A e

.j ( )θ .90 deg

dtA = dt.A e
.j θ = ..1

.j ω
A e

.j θ = ..1

ω
A e

.j ( )θ .90 deg
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rev, ECE 2210 / 00 Lecture 12 Introduction to AC Phasors

Phasor analysis with impedances, For steady-state sinusoidal response ONLY

Sinusoidal AC T = Period = repeat time

f = frequency, cycles / second f =
1

T
=

ω
.2 π

ω = radian frequency, radians/sec ω = ..2 π f

A = amplitude Phase:
Phase: φ = ..∆t

T
360 deg

or: φ = ...∆t

T
2 π rad

y( )t = .A cos( ).ω t θ

Phasor analysis The math is all based on the Euler's equation

Euler's equation = cos( )α .j sin( )α cos( )α =
e

.j α
e

.j α

2e
.j α

OR:

sin( )θ =
e

.j α
e

.j α

.2 j θ
e

.j .ω t θ
= cos( ).ω t θ .j sin( ).ω t θ

Re e
.j .ω t θ

= cos( ).ω t θ

If we freeze this at time t=0, then we can represent cos( ).ω t θ by e
.j θ

That's the phasor

Phasor

voltage: v( )t = .V p cos( ).ω t φ V( )ω = .V p e
.j φ

Phasors are drawn on a complex plane.

current: i( )t = .I p cos( ).ω t φ I( )ω = .I p e
.j φ

5

4

3

2

1

1

2

3

4

5Phasors are used for adding and subtracting sinusoidal waveforms.
v 1( )t

Ex1. Add the sinusoidal voltages v 1( )t = ..4.5 V cos( ).ω t .30 deg
v 2( )t

and v 2( )t = ..3.2 V cos( ).ω t .15 deg

timeusing phasor notation, draw a phasor diagram of the 
three phasors, then convert back to time domain form.

v 1( )t = ..4.5 V cos( ).ω t .30 deg

V 1( )ω = 4.5V /-30o or: V 1( )ω = ..4.5 V e
..j 30 deg

and
v 2( )t = ..3.2 V cos( ).ω t .15 deg

drawing of the 
phasor diagramV 2( )ω = 3.2V  /15o or: V 2( )ω = ..3.2 V e

..j 15 deg

I'm going to drop the (ω) notation from the phasor notation, it gets 
cumbersome, but remember that phasors are in the frequency 
domain..

V 1 = 4.5V /-30o or: V 1 ..4.5 V e
..j 30 deg

V 2 = 3.2V  /15o or: V 2 ..3.2 V e
..j 15 deg

ECE 2210 / 00    Intro to Phasors    p1



ECE 2210 / 00    Intro to Phasors    p2
Add like vectors, first change to the rectangular form

V 1 = 4.5V /-30o =..4.5 V cos( ).30 deg 3.897 V =..4.5 V sin( ).30 deg 2.25 V =V 1 3.897 2.25j V \
 }
/

add
V 2 = 3.2V  /15o =..3.2 V cos( ).15 deg 3.091 V =..3.2 V sin( ).15 deg 0.828 V =V 2 3.091 +0.828j V

V 3 V 1 V 2Add real parts: =3.897 3.091 6.988

Add imaginary parts: =2.25 0.828 1.422 =V 3 6.988 1.422j V sum

Change V 3 back to polar coordinates:

=6.9882 1.4222 7.131 =atan
1.422

6.988
11.502 deg

OR, in Mathcad notation (you'll see these in future solutions):

=V 3 7.131 V =arg V 3 11.5 deg

Change V 3 back to the time domain:

v 3( )t = v 1( )t v 2( )t = ..7.13 cos( ).ω t .11.5 deg V

Ex 2. Two sinusoidal voltages: v 1( )t = ..5 V cos( ).ω t .36.87 deg and v 2( )t = ..3.162 V cos( ).ω t .18.44 deg

a) using phasor notation, find v3 = v1 - v2  

V 1 ..5 V e
.j ( ).36.87 deg =..5 V cos( ).36.87 deg 4 V

=..5 V sin( ).36.87 deg 3 V
=V 1 4 +3j V

V 2 ..3.162 V e
.j ( ).18.44 deg =..3.162 V cos( ).18.44 deg 3 V

=..3.162 V sin( ).18.44 deg 1 V
=V 2 3 j V

Subtract real parts: =.4 V .3 V 1 V

Subtract imaginary parts: =.3 V .1 V 4 V
V 2

V 3 V 1 V 2 =V 3 1 +4j V

OR:
Magnitude: =( ).1 V 2 ( ).4 V 2 4.123 V

=V 3 4.123 V

Angle: =atan
.4 V
.1 V

75.96 deg =arg V 3 75.96 deg

So: v 3( )t = v 1( )t v 2( )t = ...4.123 V cos( ).ω t .75.96 deg V

What about Capacitors and Inductors? 

Capacitors and Inductors in AC circuits cause 90o phase shifts between voltages and currents because they integrate and 
differentiate.   But... integration and differentiation is a piece-of-cake in phasors. 
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Calculus d

dt
.A e

.j .ω t θ
= ...j ω A e

.j .ω t θ
= ..ω A e

.j .ω t θ .90 deg
= ..ω A e

.j θ .90 deg

Drop the ωt (t=0) to get:

= ..1

ω
A e

.j θ .90 deg

dt.A e
.j .ω t θ

= ..1
.j ω

A e
.j .ω t θ

= ..1

ω
A e

.j .ω t θ .90 deg

Impedance (like resistance)
Inductor AC impedancev L = .L d

dt
i L = .L d

dt
.I p e

.j .ω t θ
= ...j ω L .I p e

.j .ω t θ

\ in phasor notation ----> V L( )ω = ...j ω L I ( )ω Z L = ..j ω L

Capacitor

i C = .C d
dt

v C = .C d
dt

.V p e
.j .ω t θ

= ...j ω C .V p e
.j .ω t θ

\
in phasor notation ----> I C( )ω = ...j ω C V ( )ω

V C( )ω = .1
..j ω C

I ( )ω Z C =
1
..j ω C

=
j
.ω C

Resistor

v R = .i R. R V R( )ω = .R I ( )ω Z R = R

You can use impedances just like resistances as long as you deal with the complex arithmetic. 
ALL the DC circuit analysis techniques will work with AC.

series:

Z eq = Z 1 Z 2 Z 3 + . . .

Example:
f .500 Hz

R .200 Ω L .80 mH
ω ..2 π f = =ω 3141.6

rad

sec
C .0.6 µF

=..j ω L 251.327j Ω

=
1
..j ω C

530.516j Ω

Z eq R
1
..j ω C

..j ω L = =.200 Ω ..530.5 j Ω ..251.3 j Ω 200 279.2j Ω rectangular form

=( ).200 Ω 2
( ).279.2 Ω 2

343.4 Ω =atan
.279.2 Ω

.200 Ω
54.38 deg

Z eq = 343.4Ω /-54.4o polar form

If: V ..12 V e
..j 0 deg I V

Z eq
= =

.12 V
.343.4 Ω

34.945 mA / =0 54.4 54.4 deg

I = 34.95mA /54.4o = =I 20.348 +28.405j mA

Voltage divider:
Note: =

1

j
j = 1 /-90o

V Zn = .V total
Z n

Z 1 Z 2 Z 3
+ . . .

Eg: V C .V

1
..j ω C

Z eq
= ...12 V e

..j 0 deg ..530.516 e
..j 90 deg Ω

..343.4 e
..j 54.38 deg Ω

=..12 V
.530.516 Ω

.343.4 Ω
18.539 V / =0 90 54.4 35.6 deg

V C = 18.54V /-35.6o = =V C 15.069 10.795j VECE 2210 / 00    Intro to Phasors    p3
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parallel:

Example:

f .500 Hz ω ..2 π f =ω 3141.6
rad

sec
Z eq =

1

1

Z 1

1

Z 2

1

Z 3
+ . . .

L .80 mH

=..j ω L 251.327j Ω
R .200 Ω C .0.6 µF

=
1
.ω L

3.979 10 3 1

Ω
=

1
..j ω C

530.516j Ω

=.ω C 1.885 10 3 1

Ω

Z eq
1

1

R

1

1
..j ω C

1

..j ω L

=
1

1

R
..j ω C

j

.ω L

=
1

1

.200 Ω
...1.885 10 3 j
1

Ω
...3.979 10 3 j
1

Ω

= =.1

..5 10 3 ..2.094 10 3 j
1

Ω

.5 10 3 ..2.094 10 3 j

.5 10 3 ..2.094 10 3 j
170.156 +71.261j Ω

.2.93848 10 5

If you want the 
answer in polar form, 
it's easier to convert 
the denominator first.

=..5 10 3 1

Ω

2
..2.094 10 3 1

Ω

2

5.4 10 3 1

Ω
=atan

..2.094 10 3 Ω
..5 10 3 Ω

22.72 deg

=
1

..5.4 10 3 1

Ω

185.185 Ω

Z eq = 185.2 /22.7o

If: V ..12 V e
..j 0 deg I

V

Z eq
= =

.12 V
.185.2 Ω

64.795 mA / =0 22.7 22.7 deg

=I 60 25.127j mA

Current divider:

I Zn = .I total

1

Z n

1

Z 1

1

Z 2

1

Z 3

Eg: I L
.I

1
..j ω L

1

R
..j ω C

1

..j ω L

= .I
Z eq

..j ω L+ . . .

= ...64.795 mA e
..j 22.7 deg ..185.2 e

..j 22.7 deg Ω
..251.327 e

..j 90 deg Ω

= =..64.795 mA
.185.2 Ω

.251.327 Ω
47.747 mA / =22.7 22.7 90 90 deg =I L 47.746j mA

Duh... =
V

..j ω L
47.746j mAECE 2210 / 00    Intro to Phasors    p4
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Ex 1.  Find VR, VL, and VC in polar phasor form. f .2 kHz

R .500 Ω ω ..2 π f =ω 1.257 104 rad

sec
V( )jω

L .80 mH Z L
..j ω L =Z L 1.005j kΩ..6 V ej0

f .2 kHz
C .0.4 µF Z C

1
..j ω C

=Z C 0.199j kΩ

Z eq R ..j ω L
1
..j ω C

=Z eq 500 +806.366j Ω

=5002 8062 948.491 =atan
806

500
58.187 deg Zeq = 948.5Ω / 58.2o 

find the current: I
..6 V e

.j 0

Z eq
magnitude: =

.6 V
.948.5 Ω

6.326 mA angle: =.0 deg .58.2 deg 58.2 deg

I = 6.326mA /-58.2o 
find the magnitude find the angle

V R
.I R =...6.326 mA 500 Ω 3.163 V =.58.2 deg .0 deg 58.2 deg VR = 3.163V /-58.2o 

V L
.I Z L =...6.326 mA 1005 Ω 6.358 V =.58.2 deg .90 deg 31.8 deg VL = 6.358V / 31.8o 

V C
.I Z C =...6.326 mA ( )199 Ω 1.259 V =.58.2 deg .( )90 deg 31.8 deg VC = -1.259V / 31.8o 

OR: =...6.326 mA ( )199 Ω 1.259 V =.58.2 deg .( )90 deg 148.2 deg VC = 1.259V /-148.2o 

OR, you can also find these voltages directly, using a voltage divider.  I.E. to find VC directly:

V C
..

1

..j ω C

R ..j ω L
1
..j ω C

6 V = ..1
.R ( )..j ω C ...j ω L ( )..j ω C 1

6 V = ..1

.R ( )..j ω C ..ω2
L C 1

6 V

= ..1

1 ..ω2
L C ...j ω R C

6 V =1 ..ω2
L C 4.053 =...j ω R C 2.513j

= .
.6 V

4.053 .2.513 j

( )4.053 .2.513 j

( )4.053 .2.513 j
=

..6 V ( )4.053 .2.513 j

( )4.053 2 2.5132

=..6 V ( )4.053 .2.513 j 24.318 15.078j V

=( )4.053 2 2.5132 22.742

= =.24.318

22.742

.15.078 j

22.742
V 1.069 0.663j V

magnitude: =1.0692 0.6632 1.258

angle: =atan
0.663

1.069
31.81 deg

but this is actually in the third quadrant, 
so modify your calculator's results:

=.31.81 deg .180 deg 148.19 deg

 = 1.258V /-148.2o 
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L 1

.2 mH

Ex 2. a) Find Zeq. f .2.5 kHz ω ..2 π f =ω 1.571 104 rad

sec
=..j ω L 1 31.416j Ω

R .200 Ω
Z eq = ..j ω L 1

1

1

1
..j ω C

1

R ..j ω L 2

C .1 µF

L 2
.8 mH

=..j ω L 2 125.664j Ω

But it's easier to split the problem up

Left branch Right branch

Z l
1
..j ω C

=Z l 63.662j Ω Z r
..j ω L 2 R =Z r 200 +125.664j Ω

1

1
..j ω C

= =..j ω C 0.01571i
1

Ω =
1

200 .125.664 j
3.585 10 3 2.252 10 3 j

denominator: ..j ω C
1

R ..j ω L 2
= =.0.01571 j .3.585 10 3 ..2.252 10 3 j 3.585 10 3 +1.346 10 2 i

1

Ω

rectangular division:

.1

.3.585 10 3 ..1.346 10 2 j

.3.585 10 3 ..1.346 10 2 j

.3.585 10 3 ..1.346 10 2 j
= =

.3.585 10 3 ..1.346 10 2 j

.1.94 10 4
18.479 69.381j Ω

=.3.585 10 3 2
.1.346 10 2 2

1.94 10 4

add: =..j ω L 1 31.416j Ω =.31.416 j ( )18.479 .69.381 j 18.479 37.965j Ω

convert to polar (if needed): =atan
37.97

18.48
64.048 deg Zeq = 42.23Ω /-64.05o 

=18.482 37.972 42.228

Another Way

Sometimes you might simplify a little before putting in numbers.

Z eq
..j ω L 1

1

1

R ..j ω L 2

1

1
..j ω C

= ..j ω L 1
1

1

R ..j ω L 2

..j ω C
= ..j ω L 1

R ..j ω L 2

1 ...j ω C R ..j ω L 2

= ..j ω L 1
R ..j ω L 2

1 ..ω2
C L 2

...j ω C R

Z eq = ..31.416 j Ω .
.( )200 .125.664 j Ω

0.974 .3.142 j

0.974 .3.142 j

0.974 .3.142 j
= ..31.416 j Ω

.( )200 .125.664 j ( )0.974 .3.142 j

0.9742 3.1422

= ..31.416 j Ω
.( )( ).200 ( )0.974 .125.664 ( )3.142 .( ).125.664 ( )0.974 .200 3.142 j Ω

0.9742 3.1422

= ..31.416 j Ω
.( )200.036288 .750.796736 j Ω

10.82084
= =..31.416 j Ω .18.486 Ω ..69.384 j Ω 18.486 37.968j Ω

=18.492 37.972 42.233 =atan
37.97

18.49
64.036 deg Zeq = 42.23Ω /-64.04o 
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b) V in
..12 V e

..j 20 deg Find IL1, VC I L1
V in

Z eq
=

.12 V

.42.23 Ω
284.16 mA =.20 deg .( )64.04 deg 84.04 deg

I L1 = 284mA / 84.04o 

V C
..I L1 ( )18.479 .69.381 j Ω =...284 mA 18.4792 69.3812 Ω 20.391 V

=.84.04 deg atan
69.381

18.479
8.954 deg V C = 20.4V / 8.95o 

You could then use another 
voltage divider to find VR or VL2.

convert to rectangular (if needed): =..20.391 V cos( ).8.954 deg 20.143 V

=..20.391 V sin( ).8.954 deg 3.174 V V C = 20.14 .3.174 j V
Another Way

To find VC 

directly:

V C
.

1

1

R ..j ω L 2

..j ω C

..j ω L 1
1

1

R ..j ω L 2

..j ω C

V in --> math --> =V C 20.153 +3.178j V Same but for a little 
roundoff difference

c) Let's find IL2. =Z r 200 +125.664j Ω =2002 125.6642 236.202 =atan
125.664

200
32.142 deg

I L2
V C

Z r
=

..20.4 V e
..j 8.95 deg

..236.202 Ω e
..j 32.142 deg

=
.20.4 V

.236.202 Ω
/ 8.95 - 32.142o = 86.4mA  /-23.19 

Another Way

Directly by
Current divider:

I L2
.

1

R ..j ω L 2

..j ω C
1

R ..j ω L 2

I L1 = .1

...j ω C R ..j ω L 2 1
I L1 =

I L1

1 ..ω2
C L 2

...j ω C R

real part is negative

/
denominator:

=1 ..ω2
C L 2

2
( )..ω C R

2
3.289 =atan

..ω C R

1 ..ω2
C L 2

.180 deg 107.224 deg

I L2 =
..284 mA e

..j 84.04 deg

.3.289 e
..j 107.224 deg

=
.284 mA

3.289
/ 84.04 - 107.224o = 86.4mA  /-23.18o 

d) How about IC? I C
V C

1
..j ω C

= ...V C j ω C = 20.4V / 8.95o  0.015708 / 90o 
1

Ω
 = 320mA / 98.95o 

Another Way Could also be found directly by current divider: I C
.

..j ω C

..j ω C
1

R ..j ω L 2

I L1  = 320mA / 98.95o 

Something Weird

 IC is greater than the input current ( IL1 ) . What's going on?

The angle between IC & IL2 is big enough that they somewhat cancel each other out (partially resonate).
?

Check Kirchoff's Current Law: =I C I L2 29.485 +282.569j mA = =I L1 29.485 +282.569j mA
yes
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i( )t = ..25 mA cos ..377

rad

sec
t .10 deg

Ex 3. a) Find Z2. 

I ..25 mA e
..j 10 deg Z 1

.( )120 .60 j Ω
Vin  = 10V /-20o 

V in
..10 V e

..j 20 deg

R .50 Ω
Z T

V in

I
=

.10 V
.25 mA

/ -20 - 10o  = 400Ω /-30o 

Z2 = ?

=Z T 346.41 200j Ω

Z 2 Z T R Z 1 = =.( )346.41 .200 j Ω .50 Ω .( )120 .60 j Ω 176.41 140j Ω

b) Circle 1: i) The source current leads the source voltage <---  answer, because 10o > -20o. 

ii) The source voltage leads the source current

Ex 4. a) Find Vin in polar form.
I TI Z

.100 mA Z .( )80 .60 j Ω ω .1000
rad

sec
I R IZ = 100 / 0o mA

R .50 Ω
V in

.I Z Z =V in 8 6j V
Z .( )80 .60 j Ω

=82 62 10 =atan
6

8
36.87 deg

Vin  = 10V /-36.9o 

b) Find IT in polar form. I R
V in

R
=

.10 V

.50 Ω
/-36.9o = =.

.10 V

.50 Ω
cos( ).36.9 deg ..j

.10 V

.50 Ω
sin( ).36.9 deg 160 120i mA

I T I R I Z = =.( )160 .120 j mA .100 mA 260 120j mA

=atan
120

260
24.78 deg IT  = 286mA /-24.8o 

=2602 1202 286.356

c) Circle 1: i) The source current leads the source voltage answer i),  -24.8o > -36.9o 

ii) The source voltage leads the source current

d) The impedance Z (above) is made of two components in series.  What are they and what are their values?

=Z 80 60j Ω

Must have a resistor because there is a real part.

R Re( )Z =R 80 Ω

Must have a capacitor because the imaginary part is negative.

=Im( )Z 60 Ω =
1
.ω C

C
1

.ω Im( )Z
=C 16.667 µF
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Ex 5. The impedance =Z 80 60j Ω is made of two components in parallel.  What are they and what are their values?

Must have a resistor because there is a real part.

Must have an capacitor because the imaginary part is negative.

Z =
1

1

R
..j ω C

1

Z
= .1

.( )80 .60 j Ω
80 .60 j

80 .60 j
=

80 .60 j

802 602
= .80 .60 j

,10 000

1

Ω

=
1

Z
0.008 +0.006i Ω 1

=
1

R
..j ω C

1

R
= ..008

1

Ω
R

1

..008 Ω 1
=R 125 Ω

.ω C = ..006
1

Ω
C

..006 Ω 1

ω
=C 6 µF =R 125 Ω

Positive imaginary parts would require inductors

Ex 6. a) Find I1 voltage
V Z1

.( )8 .5 j Vω .20000
rad

sec

R .250 Ω
V in

..20 V e
..j 30 deg

I 2
..20 mA e

..j 20 deg

I 1
V in

R
= .

.20 V
.250 Ω

e
..j 30 deg = ..80 mA e

..j 30 deg I 1

polar division

b) Circle 1: i)  Vin leads I2 ii)  Vin lags I2

Why?  Show numbers: __30__  >  __20__ _______  <  _______

c) Find Z2 in polar form

Convert Vin to rectangular coordinates

=..20 V cos( ).30 deg 17.321 V =..20 V sin( ).30 deg 10 V pol to rect

=V in 17.321 +10j V

V Z2 V in V Z1 =V Z2 9.321 +15j V subtract

= =V Z2 17.66 V
rect to pol 9.3212 152

atan
15

9.321
= =arg V Z2 58.145 deg

div Z 2
V Z2

I 2
=

.17.66 V
.20 mA

883 Ω /  =.58.145 deg .20 deg 38.145 deg Z2 = 883 / 38.15o Ω

=Z 2 694.436 +545.379j Ω ECE 2210 / 00    Phasor Examples    p5



Ex 7. You need to design a circuit in which the "output" 

voltage leads the input voltage (vS(t)) by 40o of phase.

ECE 2210 / 00    Phasor Examples    p6
R .400 Ω

a) What should go in the box: R, L, C?

V o = .
Z box

R Z box
V S v S( )t

v o( )t

f .1 kHz
angle of

Z box

R Z box
is 40o. ω ..2 π f

This can only happen if the angle of Zbox is positive, 

so Zbox is a inductor

=ω 6.283 103 rad

sec

b) Find its value. V o = V o = .
..j ω L

R ..j ω L
V S angle

..j ω L

R ..j ω L
is 90 atan

.ω L

R
= 40o.

So: atan
.ω L

R
= 50o

.ω L

R
= =tan( ).50 deg 1.192 L = =

.R 1.192

ω
75.9 mH

c) Repeat if the "output" voltage should lag the input voltage (vS(t)) by 20o of phase.

angle of
Z box

R Z box
is -20o. This can only happen if the angle of Zbox is negative, 

so Zbox is a capacitor

V o = .

1
..j ω C

R
1
..j ω C

V S angle

1
..j ω C

R
1
..j ω C

is 90 atan

1
.ω C

R
= 90 atan

1
..ω C R

atan
1

..ω C R
= -70o.

1
..ω C R

= =tan( ).70 deg 2.747 C = =
1
..ω R 2.747

0.145 µF

Ex 8. Find VO in the circuit shown.  Express it 
as a magnitude and phase angle (polar).

Z 1
.25 Ω .35j Ω

V S
..6 V e

..j 18 deg

Z 2
..80 Ω e

..j 60 deg

V O
.

Z 2

Z 1 Z 2
V S Simple voltage divider

V O= ?

=.Z 2 cos( ).60 deg 40 Ω =.Z 2 sin( ).60 deg 69.282 Ω =Z 2 40 69.282j Ω

Z 1 Z 2 = =.25 Ω .35j Ω .40 Ω ..69.282 j Ω 65 34.282j Ω = ..73.486 Ω e
..j 27.81 deg

V O
.

Z 2

Z 1 Z 2
V S = .

..80 Ω e
..j 60 deg

..73.486 Ω e
..j 27.81 deg

..6 V e
..j 18 deg

= ...
.80 Ω

.73.486 Ω
6 V e

..j ( )60 ( )27.81 18 deg = ..6.53 V e
..j 14.2 deg
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