There are a number of lockers on the 2nd floor of the MEB, in the center hallway. These lockers have slots cut in their doors so that homework and lab notebooks can be dropped through the slots. Turn in your homework in the locker marked “ECE 2210/00 Homework”. (Sometimes lockers are separated as “ECE 2200 Homework” and “ECE 2210 Homework”, look carefully the first time.) Homework is due by 5:00 p.m. on the due date.

The following problems are not meant to be hard. You should be able to do most of them in your head with no special formulas or calculations. In fact you should find them rather dumb and trivial. That's the point, I want to drill these concepts into your head so that you'll find them easy.

1. The figure at right shows a hydraulic system with a pump that converts rotational energy to fluid energy and two turbines which convert that energy back to rotational energy. Do NOT assume that the turbines are equal in size. This is a closed system containing an incompressible fluid with no places for that fluid to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The volumetric fluid flows are indicated by the arrows.

\[
I_1 = 0.01 \text{ m}^3/\text{s} \quad I_2 = 0.007 \text{ m}^3/\text{s}
\]

\[
I_3 = \quad I_4 = \quad I_5 = \quad I_6 = \quad
\]

2. The figure at right shows an electrical circuit with a battery that converts chemical energy to electrical energy and two resistors which convert that electrical energy to heat energy. Do NOT assume that the resistors are equal in size. All electrical circuits are closed systems containing incompressible charges with no places for those charges to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The electrical currents are indicated by the arrows.

\[
I_1 = 0.01 \text{ A} \quad I_2 = 0.007 \text{ A}
\]

\[
I_3 = \quad I_4 = \quad I_5 = \quad I_6 = \quad
\]

3. The figure at right shows a similar electrical circuit only now the electrical currents are indicated by the arrows next to the wires. This is a more common way to show the current flow because a little arrow in the wire is too easily confused with the electrical symbol for a diode. You'll learn about diodes later.

\[
I_2 = 20 \text{ mA} \quad I_5 = 14 \text{ mA}
\]

\[
I_6 = \quad I_1 = \quad I_3 = \quad I_4 = \quad
\]

4. The figure at right shows a hydraulic system with a pump that converts rotational energy to fluid energy and two turbines which convert that energy back to rotational energy. Do NOT assume that the turbines are equal in size. This is a closed system containing an incompressible fluid with no places for that fluid to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The volumetric fluid flows are indicated by the arrows.

\[
I_3 = 0.004 \text{ m}^3/\text{s} \quad I_5 = 0.001 \text{ m}^3/\text{s}
\]

\[
I_2 = \quad I_1 = \quad I_6 = \quad
\]

\[
I_7 = \quad I_8 = \quad
\]
5. \[I_3 = 4.5 \text{ mA} \quad I_5 = 1.2 \text{ mA} \quad I_4 = _ _ _ _ _ _ _ _ _ _ _ _ \]
 \[I_2 = _ \]
 \[I_1 = _ \]
 \[I_6 = _ \]
 \[I_7 = _ \]
 \[I_8 = _ \]

6. Again, a similar electrical circuit with the electrical current arrows in the more common position, next to the wires.

\[I_6 = 0.03 \text{ A} \quad I_7 = 0.08 \text{ A} \quad I_8 = _ _ _ _ _ _ _ _ _ _ _ _ \]
 \[I_1 = _ \]
 \[I_2 = _ \]
 \[I_3 = _ \]
 \[I_4 = _ \]
 \[I_5 = _ \]

7. \[I_9 = 0.04 \frac{\text{m}^3}{\text{s}} \quad I_1 = _ _ _ _ _ _ _ _ _ _ _ _ \]
 \[I_2 = _ \]
 \[I_3 = _ \]
 \[I_4 = _ \]
 \[I_5 = _ \]
 \[I_6 = _ \]
 \[I_7 = _ \]
 \[I_8 = _ \]
 \[I_9 = _ \]

8. \[I_9 = 0.06 \text{ A} \quad I_1 = _ \]
 \[I_2 = _ \]
 \[I_3 = _ \]
 \[I_4 = _ \]
 \[I_5 = _ \]
 \[I_6 = _ \]
 \[I_7 = _ \]
 \[I_8 = _ \]
 \[I_9 = _ \]

9. \[I_4 = 0.05 \frac{\text{m}^3}{\text{s}} \quad I_5 = 0.014 \frac{\text{m}^3}{\text{s}} \quad I_6 = 0.03 \frac{\text{m}^3}{\text{s}} \]
 \[I_1 = _ \]
 \[I_2 = _ \]
 \[I_3 = _ \]
 \[I_4 = _ \]
 \[I_5 = _ \]
 \[I_6 = _ \]
10.

\[I_4 = 20 \text{ mA} \quad I_5 = 10 \text{ mA} \quad I_6 = 22 \text{ mA} \]

\[I_1 = \quad \quad I_2 = \quad \quad \]

\[I_3 = \quad \quad I_7 = \quad \quad \]

11. Careful here, there are now two pumps. Also, given the flow arrows shown, one or more of the flows must come out **negative**.

\[I_2 = 0.005 \frac{m^3}{s} \quad I_6 = 0.03 \frac{m^3}{s} \quad I_7 = 0.015 \frac{m^3}{s} \]

\[I_1 = \quad \quad I_3 = \quad \quad \]

\[I_4 = \quad \quad I_5 = \quad \quad \]

12. What does a negative fluid flow physically mean?

13.

\[I_1 = 0.01 \text{ A} \quad I_5 = -20 \text{ mA} \quad I_6 = 35 \text{ mA} \]

\[I_2 = \quad \quad I_3 = \quad \quad \]

\[I_4 = \quad \quad I_7 = \quad \quad \]

14. What does a negative electrical current physically mean?

15.

\[I_4 = 0.05 \frac{m^3}{s} \quad I_5 = 0.03 \frac{m^3}{s} \quad I_7 = 0.045 \frac{m^3}{s} \]

\[I_9 = 0.06 \frac{m^3}{s} \quad I_1 = \quad \quad \]

\[I_2 = \quad \quad I_3 = \quad \quad \]

\[I_6 = \quad \quad I_8 = \quad \quad \]

\[I_{10} = \quad \quad I_{11} = \quad \quad \]
16. \[I_1 := 100\text{ mA} \quad I_2 := 50\text{ mA} \quad I_3 := 30\text{ mA} \]
\[I_6 := 66\text{ mA} \quad I_4 = \quad I_5 = \quad I_7 = \]
\[I_8 = \quad I_9 = \quad I_{10} = \quad I_{11} = \]

17. The figure at right shows the pressure differentials across elements in a hydraulic system. The side indicated by the + sign is the higher pressure side. Conversely, - indicates the lower pressure. \(\Delta P_S \) is the pressure difference supplied by the pump (S for Source). \(\Delta P_2 \) is the pressure difference driving the left turbine and \(\Delta P_4 \) is the pressure difference driving the right turbine. Assume no pressure losses or discontinuities in the pipes, joints, or corners; i.e. all connected pipes are at exactly the same pressure. Finally, the fluid has no mass, so gravity and Bernoulli can go take a hike.

\[\Delta P_S := 12 \frac{N}{m^2} = 12\text{ Pa} \]
\[\Delta P_2 = \quad \Delta P_4 = \]

Yes, I know that these are ridiculously low pressures for a hydraulic system.

18. The figure at right shows the voltage differentials across elements in an electrical circuit. The side indicated by the + sign is the higher voltage side. Conversely, - indicates the lower voltage. \(V_S \) is the voltage supplied by the battery. \(V_2 \) is the voltage across the left resistor and \(V_4 \) is the voltage across the right resistor. You may assume no voltage drops across any of the wires or connections in practically all electrical schematics; i.e. all connected wires are at exactly the same voltage (electrical potential).

\[V_S := 12\text{ V} \quad (V = \text{volts}) \]
\[V_2 = \quad V_4 = \]

19. \[\Delta P_S := 400\text{ kPa} \quad \Delta P_1 := 180\text{ kPa} \quad \Delta P_3 := 100\text{ kPa} \]
\[\Delta P_5 = \quad \Delta P_7 = \]

20. \[V_1 := 10\text{ V} \quad V_5 := 3\text{ V} \quad V_7 := 2\text{ V} \]
\[V_S = \quad V_3 = \]

ECE 2210 / 00 homework # 1, p.4
21. \[\Delta P_{S1} = 200 \text{kPa} \quad \Delta P_{S2} = 150 \text{kPa} \]
\[\Delta P_2 = 50 \text{kPa} \quad \Delta P_6 = 60 \text{kPa} \]
\[\Delta P_4 = \ldots \quad \Delta P_7 = \ldots \]

22. \[V_{S1} = 6 \cdot \text{V} \quad V_2 = 2 \cdot \text{V} \]
\[V_6 = 2.4 \cdot \text{V} \quad V_7 = 3.2 \cdot \text{V} \]
\[V_{S2} = \ldots \quad V_4 = \ldots \]

23. \[\Delta P_3 = 120 \text{kPa} \quad \Delta P_4 = 80 \text{kPa} \quad \Delta P_6 = 110 \text{kPa} \]
\[\Delta P_S = \ldots \quad \Delta P_2 = \ldots \]
\[\Delta P_5 = \ldots \]

24. What does a negative pressure difference physically mean?

25. \[V_3 = 2.3 \cdot \text{V} \quad V_5 = 0.5 \cdot \text{V} \quad V_6 = 3.2 \cdot \text{V} \]
\[V_S = \ldots \quad V_2 = \ldots \]
\[V_4 = \ldots \]

26. Watch your + and - signs very carefully now.

27. \[V_{S1} = 14 \cdot \text{V} \quad V_{S2} = 3 \cdot \text{V} \quad V_2 = 6 \cdot \text{V} \quad V_3 = 4 \cdot \text{V} \]
\[V_4 = \ldots \quad V_5 = \ldots \]
\[V_6 = \ldots \]

Think about the current through the 2nd battery. What is happening to that battery?

Answers

1. \(I_3 = I_4 = I_5 = 0.003 \text{ m}^3 \text{s}^{-1}, \quad I_6 = 0.01 \text{ m}^3 \text{s}^{-1} \)

2. \(I_3 = I_4 = I_5 = 0.003 \text{ A}, \quad I_6 = 0.01 \text{ A} \)

3. \(I_6 = I_1 = 34 \text{ mA}, \quad I_3 = I_4 = 14 \text{ mA} \)

4. \(I_4 = I_6 = 0.001 \text{ m}^3 \text{s}^{-1}, \quad I_1 = I_2 = I_7 = I_8 = 0.005 \text{ m}^3 \text{s}^{-1} \)

5. \(I_4 = I_6 = 1.2 \text{ mA}, \quad I_1 = I_2 = I_7 = 1.8 = 5.7 \text{ mA} \)

6. \(I_1 = I_2 = I_7 = 80 \text{ mA}, \quad I_3 = 50 \text{ mA}, \quad I_4 = I_5 = 30 \text{ mA} \)

7. \(I_1 = I_3 = 10 \text{ mA}, \quad I_4 = I_5 = 0.04 \text{ m}^3 \text{s}^{-1}, \quad I_2 = I_3 = I_7 = I_8 = 0.04 \text{ m}^3 \text{s}^{-1} \)

10. \(I_1 = I_7 = 42 \text{ mA}, \quad I_2 = 12 \text{ mA}, \quad I_3 = 30 \text{ mA} \)

11. \(I_1 = 0.05 \text{ m}^3 \text{s}^{-1}, \quad I_3 = 0.01 \text{ m}^3 \text{s}^{-1}, \quad I_4 = 0.045 \text{ m}^3 \text{s}^{-1}, \quad I_5 = 0.035 \text{ m}^3 \text{s}^{-1} \)

12. Actual flow is in direction opposite to the arrow direction.

13. "

14. "

15. \(I_1 = 0.15 \text{ m}^3 \text{s}^{-1}, \quad I_2 = 0.01 \text{ m}^3 \text{s}^{-1}, \quad I_3 = 0.08 \text{ m}^3 \text{s}^{-1}, \quad I_6 = 0.045 \text{ m}^3 \text{s}^{-1}, \quad I_8 = 0.095 \text{ m}^3 \text{s}^{-1}, \quad I_10 = 0.06 \text{ m}^3 \text{s}^{-1} \)

16. \(I_4 = 14 \text{ mA}, \quad I_5 = 16 \text{ mA}, \quad I_7 = 66 \text{ mA}, \quad I_8 = 80 \text{ mA}, \quad I_9 = 20 \text{ mA}, \quad I_10 = 0 \text{ mA}, \quad I_11 = 20 \text{ mA} \)

17. \(\Delta P_2 = \Delta P_4 = 12 \text{ Pa} \)

18. \(V_2 = V_4 = 12 \text{ V} \)

19. \(\Delta P_5 = 100 \text{ kPa}, \quad \Delta P_7 = 120 \text{ kPa} \)

20. \(V_S = 15 \text{ V}, \quad V_3 = 3 \text{ V} \)

21. \(\Delta P_4 = 0 \text{ kPa}, \quad \Delta P_7 = 40 \text{ kPa} \)

22. \(V_{S2} = 7.6 \text{ V}, \quad V_4 = 0 \text{ V} \)

23. \(\Delta P_5 = 200 \text{ kPa}, \quad \Delta P_2 = 90 \text{ kPa}, \quad \Delta P_7 = 30 \text{ kPa} \)

24. The actual + & - should be reversed from those on drawing

25. \(V_S = 6 \text{ V}, \quad V_2 = 2.8 \text{ V}, \quad V_4 = 3.7 \text{ V} \)

26. \(\Delta P_{S1} = 280 \text{ kPa}, \quad \Delta P_{S2} = 350 \text{ kPa}, \quad \Delta P_5 = 90 \text{ kPa} \)

27. \(V_4 = 10 \text{ V}, \quad V_5 = 2 \text{ V}, \quad V_6 = -5 \text{ V} \) battery is charging

28. \(\Delta P_{S5} = 2000 \text{ kPa}, \quad \Delta P_4 = 1200 \text{ kPa}, \quad \Delta P_5 = 500 \text{ kPa}, \quad \Delta P_6 = 700 \text{ kPa}, \quad \Delta P_{10} = 0 \text{ kPa} \)

29. \(V_1 = 4 \text{ V}, \quad V_2 = 8 \text{ V}, \quad V_6 = 6 \text{ V}, \quad V_9 = 14 \text{ V}, \quad V_{10} = 0 \text{ V} \)
1. Ohm's law
Consider the figure at right
For each of the cases below, find the missing value.

\[\begin{align*}
\text{a)} & \quad I = 0.01 \text{ A} \quad V = 4 \text{ V} \quad R = ? \\
\text{b)} & \quad I = 50 \text{ mA} \quad R = 560 \Omega \quad V = ? \\
\text{c)} & \quad V = 12 \text{ V} \quad R = 1.5 \text{ kΩ} \quad I = ? \\
\end{align*} \]

2. Power and Ohm's law. Same circuit as above. For each of the cases below, find the missing values.

\[\begin{align*}
\text{a)} & \quad I = 5 \text{ mA} \quad R = 2 \text{ kΩ} \quad V = \quad P_R = \\
\text{b)} & \quad V = 25 \text{ V} \quad R = 100 \Omega \quad I = \quad P_R = \\
\text{c)} & \quad V = 20 \text{ V} \quad I = 0.01 \text{ A} \quad R = \quad P_R = \\
\text{d)} & \quad P_R = 900 \text{ W} \quad \text{Toaster} \quad V = 120 \text{ V} \quad I = \quad R = \\
\text{e)} & \quad P_R = 1500 \text{ W} \quad \text{Hair drier} \quad R = 9.6 \Omega \quad I = \quad V_S = \\
\text{f)} & \quad P_R = 2500 \text{ W} \quad \text{Electric oven} \quad I = 10.5 \text{ A} \quad R = \quad V_S = \\
\end{align*} \]

Ignore the fact that the following items run on AC

\[\begin{align*}
\text{d)} & \quad P_R = 900 \text{ W} \quad \text{Toaster} \quad V = 120 \text{ V} \quad I = \quad R = \\
\text{e)} & \quad P_R = 1500 \text{ W} \quad \text{Hair drier} \quad R = 9.6 \Omega \quad I = \quad V_S = \\
\text{f)} & \quad P_R = 2500 \text{ W} \quad \text{Electric oven} \quad I = 10.5 \text{ A} \quad R = \quad V_S = \\
\end{align*} \]

3. Find the equivalent resistance of each of these networks, i.e. what would an ohmmeter read if hooked to the terminals.

\[\begin{align*}
\text{a)} & \quad R_1 = 1.8 \text{ kΩ} \quad R_2 = 1.0 \text{ kΩ} \quad R_3 = 2.5 \text{ kΩ} \quad R_4 = 5.6 \text{ kΩ} \\
\end{align*} \]
b) \(R_2 = 2.2 \, \text{k}\Omega \)
\(R_1 = 1.5 \, \text{k}\Omega \)
\(R_3 = 900 \, \Omega \)
\(R_4 = 3 \, \text{k}\Omega \)

c) \(R_1 = 120 \, \Omega \)
\(R_2 = 80 \, \Omega \)
\(R_3 = 80 \, \Omega \)

d) \(R_1 = 110 \, \text{k}\Omega \)
\(R_2 = 68 \, \text{k}\Omega \)
\(R_3 = 82 \, \text{k}\Omega \)

e) \(R_1 = 150 \, \Omega \)
\(R_2 = 56 \, \Omega \)
\(R_3 = 22 \, \Omega \)

Don't forget: Write your folder number in the upper-left corner of your homework.

Answers

1. a) \(R = 400 \, \Omega \)
 b) \(V_R = 28 \, \text{V} \)
 c) \(I = 8 \, \text{mA} \)
2. a) \(V_R = 10 \, \text{V} \) \(P_R = 50 \, \text{mW} \)
 b) \(I = 0.25 \, \text{A} \) \(P_R = 6.25 \, \text{W} \)
 c) \(R = 2.0 \, \text{k}\Omega \) \(P_R = 200 \, \text{mW} \)
 d) \(I = 7.5 \, \text{A} \) \(R = 16 \, \text{\Omega} \)
 e) \(I = 12.5 \, \text{A} \) \(V_S = 120 \, \text{V} \)
 f) \(R = 22.7 \, \text{\Omega} \) \(V_S = 238 \, \text{V} \)
3. a) \(R_{eq} = 10.9 \, \text{k}\Omega \)
 b) \(R_{eq} = 390 \, \Omega \)
 c) \(R_{eq} = 160 \, \Omega \)
 d) \(R_{eq} = 81 \, \text{k}\Omega \)
 e) \(R_{eq} = 51.3 \, \Omega \)
Due: Wed, 9/4/19 You should finish p.1 by Mon.

Graded homework, labs and exams will be returned to a file cabinet in MEB 2101, filed by your alphabetically-assigned folder number.

Answer the following problems on your own paper.

Since you have the answers, you must show the equations and work you used to arrive at the answer to get credit.

Don’t forget: Write your folder number in the upper-left corner of your homework.

Equivalent resistance
1. Find the equivalent resistance of each of these networks, i.e. what would an ohmmeter read if hooked to the terminals. Work out and keep all your intermediate results -- they will help you in the problems to come.

```
a)  R_1 := 56-k\Omega  \quad R_3 := 97-k\Omega  
   R_2 := 110-k\Omega  \quad R_4 := 82-k\Omega

b)  R_1 := 27-\Omega  
   R_2 := 100-\Omega  
   R_3 := 20-\Omega  
   R_4 := 56-\Omega  

   \quad R_6 := 39-\Omega  
   \quad R_7 := 51-\Omega  
   \quad R_5 := 75-\Omega
```

Note: the hard part of these problems is actually seeing which resistors are in parallel and which are in series. You may want to redraw the circuits a few times to help you figure it out.

Voltage dividers
2. a) Use the voltage divider concept to find the voltage across each of the resistors in the circuit at right. \(V_{R1} = ? \) \(V_{R2} = ? \) \(V_{R3} = ? \)

b) Confirm that the three resistor voltages add up to the source voltage, i.e. confirm Kirchhoff’s voltage law.

c) Without recalculating anything, what would happen to all the resistor voltages if the source voltage were doubled? Tripled?

3. The circuit at right is known as a wheatstone bridge, or simply a bridge. It is a very common measurement circuit, used with strain gauges, thermistors, and other devices whose resistance changes in response to something that you’d like to measure. Let’s assume the resistors in this circuit are 100Ω strain gauges. The resistance of these gauges changes slightly when you stretch or compress them. They are glued to a material (often steel) and are used to measure deformations of the material (called strain).

 a) Due to deformation, \(R_1 \) and \(R_4 \) decrease by 1% and \(R_2 \) and \(R_3 \) increase by 1%. Find \(V_{ab} \).

 b) Due to a temperature change, the resistances of all the gages increase by 5%. Find the % change in \(V_{ab} \).

 c) Why do you think the bridge circuit is used in this case?

4. Use voltage divider concepts to find the voltages indicated in the following circuits. You may want to use some of your results from problem 1. You may need to use the voltage divider equation more than once.

```
a)  R_1 := 56-k\Omega  \quad R_3 := 97-k\Omega  
   R_2 := 110-k\Omega  \quad R_4 := 82-k\Omega  
   R_5 := 15-k\Omega

   \quad V_{R5} = ?  \quad V_{R4} = ?  \quad V_{R1} = ?

b)  R_8 := 12-\Omega  
   R_1 := 27-\Omega  
   R_3 := 20-\Omega  

   \quad R_2 := 100-\Omega  
   \quad R_3 := 20-\Omega  

   \quad R_6 := 39-\Omega  
   \quad R_7 := 51-\Omega  
   \quad R_5 := 75-\Omega

   \quad V_{R8} = ?  \quad V_{R2} = ?  \quad V_{R1} = ?
```
ECE 2210 / 00 homework # 3 p.2

Current Dividers

5. The circuit at right shows a current source hooked to a resistor network. Remember that the grounds are all connected together. You can draw lines between them if it helps you.

a) Use the current divider concept to find the current through each of the resistors in the circuit at right.

\[I_{R1} = ? \quad I_{R2} = ? \quad I_{R3} = ? \quad I_{R4} = ? \]

b) Confirm that \(I_{R2} + I_{R3} = I_{R1} \) and that \(I_{R1} + I_{R4} = I_S \)

ie, confirm Kirchoff's current law twice.

c) Without recalculating anything, what would happen to all the currents if the source current were doubled? Tripled?

6. Refer back to the circuit of problem 4b.

a) Find the equivalent resistance as seen by the source (\(R_8 + \) your answer for problem 1b) and use that to find the source current (\(I_S \) or \(I_{R8} \)).

b) Find these currents by current divider methods.

\[I_{R2} = ? \quad I_{R1} = ? \quad I_{R4} = ? \]

c) Using Ohm's law and the currents you found in this problem, confirm the voltages found in problem 4b.

Power

7. Refer to the circuit of problem 2.

a) How much power is dissipated by each resistor?

\[P_{R1} = ? \quad P_{R2} = ? \quad P_{R3} = ? \]

b) Independently determine the power that the source is contributing to the circuit.

\[P_S = V S \cdot I_S = ? \]

c) Show that power is conserved (\(\Sigma \) answers to a = answer to b).

8. Refer to the circuit of problem 5.

a) How much power is dissipated by each resistor?

\[P_{R1} = ? \quad P_{R2} = ? \quad P_{R3} = ? \quad P_{R4} = ? \]

b) Independently determine the power that the source is contributing to the circuit.

\[P_S = V S \cdot I_S = ? \]

c) Show that power is conserved.

9. The circuit at right has five unknown components labeled A through E.

a) Which of the components are absorbing power from the circuit?

b) Which of the components are contributing power to the circuit?

c) Show that power is conserved.

Answers

1. a) \(R_{eq} = 82.5 \, \text{k}\Omega \)
 b) \(R_{eq} = 41.7 \, \text{k}\Omega \)

2. a) 1.91-V, 1.28-V, 2.81-V
 b) 1.91-V + 1.28-V + 2.81-V = 6-V
 c) double, triple

3. a) 100-mV
 b) 0% change
 c) Reading won't be affected by temperature.

4. a) 5.54-V, 17.35-V, 13.11-V
 b) 2.23-V, 7.77-V, 2.93-V

5. a) 17.67-mA, 9.66-mA, 8.01-mA, 17.33-mA
 b) both check
 c) double, triple

6. a) 53.7-\(\Omega \), 0.186-A
 b) 77.65-mA, 108.6-mA, 28.6-mA
 c) all agree

7. a) 2.44-mW, 1.63-mW, 3.59-mW
 b) 7.66-mW
 c) \(P_S = P_{R1} + P_{R2} + P_{R3} \)

8. a) 0.343-W, 0.0634-W, 0.0526-W, 0.451-W
 b) 0.910-W
 c) \(P_{R1} + P_{R2} + P_{R3} + P_{R4} = P_S \)

9. a) C, D, E
 b) A, B
 c) 6-W = 6-W

Don't forget: Write your folder number in the upper-left corner of your homework.
Answer the following problems on your own paper. Show your equations and work to get credit on this and all future homeworks.

Don't forget: Write your folder number in the upper-left corner of your homework.

Superposition

1. Use superposition to find I_3. Circle your intermediate solutions on your paper. Your intermediate solutions show how much of I_3 is due to V_{S1}, and how much is due to V_{S2}.

 - $V_{S1} = 8\text{ V}$
 - $R_1 = 1\text{ k}\Omega$
 - $R_2 = 500\text{ }\Omega$

2. Use superposition to solve following problems: Each problem asks for both a current and a voltage. Clearly indicate your intermediate answers, the grader will look for those.

 a) The letter “a” is the name of the “node” at the black dot. V_a is a node voltage, referenced to ground.

 - $R_1 = 40\text{ }\Omega$
 - $V_{S1} = 5\text{ V}$
 - $V_{S2} = 6\text{ V}$

 b) $I = 20\text{ mA}$

 c) Watch your signs.

Answers

1. $2\text{ mA} + 5\text{ mA} = 7\text{ mA}$
2. a) $4.2\text{ V} , 20\text{ mA}$
 b) $7.67\text{ V} , 197\text{ mA}$
 c) $0.5\text{ V} , -0.5\text{ mA}$

Don't forget: Write your folder number in the upper-left corner of your homework.
Thevenin & Norton equivalent circuits

1. For each of the circuits below, find and draw the Thevenin equivalent circuit.

 a) \(V_S = 9 \text{ V} \)

 \[
 \begin{align*}
 R_1 &: 36 \text{ k}\Omega \\
 R_2 &: 12 \text{ k}\Omega \\
 R_3 &: 30 \text{ k}\Omega \\
 R_L &: 20 \text{ k}\Omega
 \end{align*}
 \]

 b) The load resistor is \(R_L \), and is in a strange place in this circuit. Hint: use superposition to find \(V_{th} \).

 \[
 \begin{align*}
 R_1 &: 10 \text{ k}\Omega \\
 R_2 &: 50 \text{ k}\Omega \\
 V_S &: 6 \text{ V}
 \end{align*}
 \]
 2nd hint: Nodal analysis is even easier.

2. For the circuit of problem 1a, find the voltage across \(R_L \) (\(V_L \)) and the current through \(R_L \) (\(I_L \)) using your Thevenin equivalent circuit.

 2nd hint: Nodal analysis is even easier.

3. For each of the circuits in problem 1, find and draw the Norton equivalent circuit.

4. For the circuit of problem 1b, find \(V_L \) and \(I_L \) using your Norton equivalent circuit.

5. For the circuit shown at right, use Thevenin’s theorem to find the current through the 50 \(\Omega \) resistor \(R_4 \).

6. For the circuit shown, use Norton’s theorem to find the value of the current in \(R_5 \). Hint: You can find \(I_N \) either by calculation of the open circuit voltage (\(V_{OC} \)) and \(R_N \) or by direct calculation of the short-circuit current (\(I_{SC} \)), however, there is something about the values of the resistors which makes the second method easier than it would at first appear.

Source resistance

7. The terminal voltage of a car’s battery drops from 12.5 V to 8.5 volts when starting. The starter motor draws 60 A of current.

 a) Draw the voltage-source model (Thevenin equivalent) of this battery. Include the values of \(V_S \) and \(R_S \).
 b) Draw the current-source model (Norton equivalent) of this battery. Include the values of \(I_S \) and \(R_S \).
 c) Which of these two models is more appropriate for the car battery?
 d) What terminal voltage would you expect if this battery were being charged at 20 A?

Answers

1. a) 4.091-V , 28.4-k\Omega b) 1.1-V , 18.3-\Omega
2. 1.69-V , 84.6-\mu\text{A}
3. a) 0.144-mA , 28.4-k\Omega b) 60-mA , 18.3-\Omega
4. 3.16-mA, 1.042-V
5. 1.88-mA
6. 0.19-A
7. a) \(V_S = 12.5 \text{ V} \), \(R_S = 0.00667-\Omega \)
 b) \(I_S = 187.5-\text{A} \), \(R_S = 0.0667-\Omega \)
 c) Thevenin
 d) 13.83-V
Nodal Analysis
1. a) If you select the bottom node as ground, how many unknown node voltages remain? (Assume V_S is a known quantity.) How many simultaneous equations would you need to solve to analyze this circuit?

 b) Use nodal analysis to find all the necessary simultaneous equations.

2. a) Use nodal analysis to find all the node voltages.

 b) Your node voltages will depend on your selection of a reference node (ground) as well as your arbitrary node labels, so the grader won’t look at these specifically. Use your node voltages to find the potential (voltage) across each resistor. Report the magnitude and polarity of each.

3. Use Nodal analysis to find V_a and use V_a to find I_3.

4. Use Nodal analysis to solve following problems: Each problem asks for at least 1 voltage and a current. Use the voltage(s) to find the current.

 a) $R_1 := 40 \Omega$ $V_a =$? $I_{R1} =$? $V_{S1} := 5 \text{ V}$ $V_{S2} := 6 \text{ V}$

 b) $V_a =$? $R_3 := 1 \text{ k}\Omega$ V_a $R_2 := 120 \Omega$ $V_b =$? $R_2 := 120 \Omega$ V_b $R_3 := 2 \text{ k}\Omega$ $R_4 := 2 \text{ k}\Omega$ $R_6 := 2 \text{ k}\Omega$ $V_S := 4.5 \text{ V}$ $V_{S1} := 5 \text{ V}$ $V_{S2} := 6 \text{ V}$ $I_S := 3 \text{ mA}$ $I_{R1} := 0.5 \text{ mA}$

Don't forget your folder number.

Answers
1. a) 3, 3
 b) $V_a = \frac{V_S}{R_1} - \frac{V_b + V_c}{R_2} - \frac{V_c}{R_3}$

 2. a) Answer will depend on your choice of ground, so check your answers to part b to see if you did part a right.

 b) 3.077-V, + bottom, 2.308-V, + left, 1.923-V, + top, 0.385-V, + bottom, 2.692-V, + right

3. 7-V, 7-mA

 4. a) 4.2-V, 20-mA
 b) $V_a := 1.5 \text{ V}$ $V_b := 0.5 \text{ V}$ $I_{R1} := 0.5 \text{ mA}$

You may not get this homework back before the 1st exam. Photocopy it if you want to be sure to have it.
Answer the following problems on your own paper.

1. For each of the following sinusoidal waves, find:
 1) peak-to-peak voltage or current, V_{pp} or I_{pp}
 2) amplitude, A, V_p or I_p
 3) period, T
 4) frequency f in cycles/sec or Hz
 5) an expression for $v(t)$ or $i(t)$ in terms of $A\cos(\omega t + \phi)$
 the frequency ω is in radians/sec
 the phase angle ϕ is in rad/sec or degrees

2. For each of the following waveforms, find:
 1) Peak-to-peak voltage or current, V_{pp} or I_{pp}
 2) Average, (V_{DC}, I_{DC}, V_{ave}, or I_{ave})
 3) Period, T
 4) Frequency f in cycles/sec or Hz

3. For problem 2a above, write a full expression for $v(t)$ in terms of $v(t) = A\cos(\omega t + \phi) + V_{DC}$

Answers

1. a) 0.2 V 0.1-V 12-ms 83.3-Hz 0.1-V-cos(523.6-t)
 b) 24 V 12-V 0.018-ms 55.6-kHz
 \[v(t) = 12-V\cos(349100t - 90\text{-deg}) \]
 c) 16-mA 8-mA 0.3-ms 3333-Hz
 \[8\text{-mA-cos}(20940-t + 150\text{-deg}) \]

2. a) 12 V 3-V 6-ms 167-Hz
 b) 12 V 6-V 4-ms 250-Hz
 c) 250-mA 25-mA 0.6-ms 1.667-kHz

3. $v(t) = 6\cdot V\cdot\cos(1047\cdot t - 90\text{-deg}) + 3\cdot V$
1) Find C_{eq} in each case

a) $C_1 := 0.2 \mu F$
$C_2 := 0.4 \mu F$

b) $C_1 := 0.02 \mu F$
$C_2 := 0.06 \mu F$

c) $C_1 := 3 \mu F$
$C_2 := 3 \mu F$
$C_3 := 1.2 \mu F$
$C_4 := 1.8 \mu F$

2. Each of the following circuits have been connected as shown for a long time. Find the voltage across each capacitor and the energy stored in each.

a) $V_S := 5.5 V$
$R_1 := 220 \Omega$
$C := 5 \mu F$
$R_2 := 330 \Omega$

b) $R_1 := 2.4 \text{k}\Omega$
$R_2 := 1.5 \text{k}\Omega$
$I_S := 25 \text{mA}$
$C := 0.47 \mu F$

c) $R_1 := 22 \text{k}\Omega$
$C := 0.68 \mu F$
$R_2 := 4.8 \text{k}\Omega$
$R_3 := 10 \text{k}\Omega$
$V_S := 16 V$
3. The current waveform shown below flows through a 0.025 µF capacitor. Make an accurate drawing of the voltage across it. Label your graph. Assume the initial voltage across the capacitor is 0 V.

4. The voltage across a 2 µF capacitor is shown below. Make an accurate drawing of the capacitor current. Label your graph.

5. The voltage across a 0.68 µF capacitor is \(v_c = 6 \cdot V \cdot \cos \left(200t + \frac{\pi}{2} \right) \). Find \(i_c \).

6. The current through a 0.0047 µF capacitor is \(i_c = 18 \mu A \cdot \cos \left(628t - \frac{\pi}{4} \right) \). Find \(v_c \).

7. A capacitor voltage and current are shown at right. What value is the capacitor?

Answers
1. a) 0.6-µF b) 0.015-µF c) 4.5-µF
2. a) 3.3V 0.027-mJ b) 37.5-V 0.33-mJ c) 11-V 0.0411-mJ 5-V 2.75-µJ
3. 1.8-V 0.6-V 2.4-V 4. -6-mA 12-mA ramp to -8mA
4. 5. \(i_c = 0.816 \mu A \cdot \cos(200t + \pi) \) 6. \(v_c = 6.1 \cdot V \cdot \cos \left(628t - \frac{3\pi}{4} \right) \) 7. 0.25-µF
You will need another paper for your calculations, but you may want to hand this sheet in with your drawings.

1. Find L_{eq} in each case
 a) $L_1 := 2\cdot mH$
 b) $L_1 := 0.22\cdot mH$
 $L_2 := 0.4\cdot mH$

2. Find the stored energy in each capacitor and/or inductor under steady-state conditions. Note: Treat caps as opens and inductors as shorts to find DC voltages and currents.
 a) $C_1 := 10\cdot \mu F$
 b) $L_1 := 0.5\cdot mH$
 $R_1 := 30\cdot \Omega$
 $L_2 := 4\cdot mH$
 $R_2 := 60\cdot \Omega$
 $C_2 := 2\cdot \mu F$
 $V_S := 18\cdot V$

3. The current waveform shown below flows through a 2 mH inductor. Make an accurate drawing of the voltage across it. Label your graph.

4. The voltage across a 0.5 mH inductor is shown below. Make an accurate drawing of the inductor current. Label your graph. Assume the initial current is 0 mA.
5. The voltage across a 1.2 mH inductor is \(v_L = 4 \cdot \text{mV} \cdot \cos(300 \cdot t) \) find \(i_L \).

6. The current through a 0.08 mH inductor is \(i_L = 20 \cdot \text{mA} \cdot \cos\left(628 \cdot t - \frac{\pi}{4}\right) \) find \(v_L \).

7. Refer to the circuit shown. Assume that \(V_s \) is a sinusoidal input voltage whose frequency can be adjusted. At some frequency of \(V_s \) this circuit can resonate. At that frequency \(i_C(t) = -i_L(t) \). (\(i_C(t) \) is 180 degrees out-of-phase with \(i_L(t) \)).

Show that resonance occurs at this frequency:

\[
\omega_0 = \frac{1}{\sqrt{L \cdot C}}, \quad f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}
\]

8. Find the resonant frequency, \(f_o \) in each case.

a) \(L_1 = 0.5 \cdot \text{mH} \)

\[C_1 := 0.1 \cdot \mu \text{F} \quad C_2 := 0.22 \cdot \mu \text{F} \]

b) \(L_1 = 10 \cdot \text{mH} \)

\[C_1 := 0.12 \cdot \mu \text{F} \quad C_2 := 0.12 \cdot \mu \text{F} \]

Answers

1. 1.2 mH 0.62 mH 2. a) 0.05 mJ b) 1.62 mJ 0.081 mJ 0.09 mJ 0.18 mJ

3. Straight lines between the following points: (0 ms, -8 mV), (2 ms, -8 mV), (2 ms, 0 mV), (3 ms, 0 mV), (3 ms, 16 mV), (5 ms, 16 mV), (5 ms, 0 mV), (6 ms, 0 mV), (9 ms, -10.67 mV), (9 ms, 0 mV), (10 ms, 0 mV)

4. Straight lines between the following points: (0 ms, 0 A), (0.2 ms, 1.2 A), (0.6 ms, -0.4 A), curves until it's flat at (0.76 ms, -0.72 A), continues to curve up to (1 ms, 0 A), (1.1 ms, 0 A)

5. \(i_L = 11.1 \cdot \text{mA} \cdot \cos(300 \cdot t - 90 \text{ degrees}) \)

6. \(v_L = 1 \cdot \text{mV} \cdot \cos\left(628 \cdot t + \frac{\pi}{4}\right) \)

7. Assume a sinusoidal voltage, find \(i_C \) and \(i_L \) by integration and differentiation, and show that they are equal and opposite at the resonant frequency.

8. a) 17.79 kHz b) 5305 Hz
1. An FE style problem
A 10-microfarad capacitor has been charged to a potential of 150 volts. A resistor of 25 Ω is then connected across the capacitor through a switch. When the switch has been closed for 10 time constants the total energy dissipated by the resistor is most nearly

(A) 1.0×10^{-7} joules
(B) 1.1×10^{-1} joules
(C) 9.0×10^{1} joules
(D) 9.0×10^{3} joules

2. a) The switch is closed at time $t = 0$ and $v_C(0) = 0V$, find $v_C(t)$.

b) What is the value of the voltage across C at $t := 40-\mu s$?

3. In the circuit below, the switch has been in the upper position for a long time and is switched down at time $t = 0$.

What is the capacitor voltage (V_C) at $t := 4\text{-ms}$?

4. The switch below has been in the upper position for a long time and is switched down at time $t = 0$.

At what time is $v_C = 4 \text{ V}$?

5. a) What is the time constant of this circuit?

b) Find the time constant (τ) of this circuit.

5. a) What is the time constant of this circuit?

Hint: Use a Thévenin equivalent circuit.

b) What will be the final value of v_C?

(After the switch has been closed for a long time)

6. In a circuit with two capacitors, the left capacitor (C_1) has an initial charge and the right capacitor (C_2) does not. When the switch is closed at time $t = 0$, current $i(t)$ flows, discharging C_1 and charging C_2.

a) Derive the differential equation for $i(t)$. Hint: write an equation in terms of i and integrals of i, then differentiate the whole equation.

Write your DE in this form: $\frac{d}{dt}x(t) + \frac{R}{C}x(t) = \frac{1}{C}V(t)$

What is the time constant (τ)?

b) Find $i(t)$ given $C_1 := 24 \mu F$, $C_2 := 12 \mu F$, $R := 400 \Omega$, $v_{C1}(0) = 18 \text{ V}$, $v_{C2}(0) = 0 \text{ V}$.

c) Find $v_{C2}(t)$ for the same values. Hint: The trick here will be finding the final condition. Realize that charge will be conserved. If C_1 discharges x coulombs, then C_2 will charge x coulombs. Charges will stop flowing when $v_{C1} = v_{C2}$. It may help to think of two water tanks, one with half the cross-sectional area of the other.

d) Find the initial and final stored energy of the system ($W_{C1} + W_{C2}$) to find the total "loss". What happened to that energy?

Answers

1. A
2. B
3. 6.61-V
4. 6.44-ms
5. a) 5.87-ms
b) 5-V
6. a) $\tau = \frac{R}{C} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$
6. b) $i(t) = 45 \text{ mA} \cdot e^{-\frac{t}{3.2 \text{ ms}}}$
6. c) $12 \text{ V} - 12 \text{ V} \cdot e^{-\frac{t}{3.2 \text{ ms}}}$
6. d) 1.3 mJ

ECE 2210 / 00 homework # 10

Due: Tue, 10/1/19

A.Stolp

b.2
1. A 12 V car ignition coil has an inductance of 10 mH and resistance of 2 Ω (so its equivalent circuit is a 10 mH inductor in series with a 2 Ω resistor). Calculate how long it takes the current to build up to 95% of its maximum value after a 12 V battery is connected to the coil.

2. A constant voltage is applied to a series RL circuit by closing a switch. The voltage across L is 30 volts at t = 0 and drops to 6 volts at t = .0025 sec. If L = 0.2 H, what must be the value of R?

3. In the circuit shown, the switch is closed at t = 0. Find the transient current expression.

\[V_{in} = 100 \text{V} \]
\[R_1 = 30 \Omega \]
\[R_2 = 40 \Omega \]
\[L = 0.1 \text{henry} \]
\[R_3 = 10 \Omega \]

\[V_{in1} = 40 \text{V} \]
\[V_{in2} = 40 \text{V} \]
\[t = 1 \text{ms} \]
\[L = 0.2 \text{henry} \]

If you learn to use the complex math feature of your calculator, you may use that to work the following problems. In that case you may report the answers without showing any work.

4. In the circuit shown, the switch is closed on position 1 at t = 0, and then instantly moved to position 2 after 1 millisecond. Find the time at which the current is zero and reversing its direction.

5. Convert the following complex numbers to polar form \((m, \theta)\) or \(me^{i\theta}\).
 a) \(1 + j\)
 b) \(2.6 + 8.7j\)
 c) \(3 + 4j\)
 d) \(3 - 4j\)
 e) \(-3 + 4j\)
 f) \(-3 - 4j\)

6. Convert the following complex numbers to rectangular form \((a + bj)\).
 a) \(10e^{j60\text{deg}}\)
 b) \(0.4e^{j12\text{deg}}\)
 c) \(1500e^{j\frac{\pi}{2}\text{rad}}\)
 d) \(10e^{j45\text{deg}}\)
 e) \(20e^{j120\text{deg}}\)
 f) \(30e^{j210\text{deg}}\)

7. Perform the following additions and subtractions of complex numbers.
 a) \((3 + 2j) + (6 + 9j)\)
 b) \((9 - 10j) - (9 + 10j)\)
 c) \((-2 - 2j) + (-6 + 9j)\)
 d) \((3 + 0j) - (0 + 9j)\)
 e) \((5 + 6j) + 5e^{j53\text{deg}}\)
 f) \((-2 + 3j) - 8e^{j37\text{deg}}\)

8. Perform the following multiplications of complex numbers.
 a) \((8 + j) \cdot 3\)
 b) \((3 + 2j) \cdot j\)
 c) \(20e^{j40\text{deg}} \cdot 10e^{j60\text{deg}}\)
 d) \((-6 + 9j) \cdot (10e^{j60\text{deg}})\)
 e) \((-2 - j) \cdot (-6 - 9j)\)

9. Perform the following divisions of complex numbers.
 a) \(\frac{20e^{j40\text{deg}}}{10e^{j60\text{deg}}}\)
 b) \(\frac{9 - 10j}{3e^{j20\text{deg}}}\)
 c) \(\frac{3 + 0j}{0 + 9j}\)
 d) \(\frac{-2 - 2j}{6 + 9j}\)

Answers

1. 15 ms
2. 129 Ω
3. 1.25 A \(\frac{1 - e^{-\frac{t}{1.25 \text{ms}}}}{1 - e^{-1.25 \text{ms}}}\)
4. 1.312 ms

5. a) \(1.414e^{j45\text{deg}}\)
 b) \(9.08e^{j73.4\text{deg}}\)
 c) \(5e^{j53.1\text{deg}}\)
 d) \(5e^{j53.1\text{deg}}\)
 e) \(5e^{j126.9\text{deg}}\)
 f) \(5e^{j126.9\text{deg}}\)

6. a) \(5 + 8.66j\)
 b) \(0.391 + 0.083j\)
 c) \(1500j\)
 d) \(7.071 - 7.071j\)
 e) \(-10 + 17.321j\)
 f) \(-25.981 - 15j\)

7. a) \(9 + 11j\)
 b) \(-20j\)
 c) \(-8 + 7j\)
 d) \(-3 - 9j\)
 e) \(8.009 + 9.993j\)
 f) \(-8.389 + 7.815j\)

8. a) \(24 + 3j\)
 b) \(-2 + 3j\)
 c) \(200e^{j100\text{deg}}\)
 d) \(108e^{j176\text{deg}}\)
 e) \(24.2e^{j82.9\text{deg}}\)

9. a) \(2e^{j20\text{deg}}\)
 b) \(4.485e^{j28.01\text{deg}}\)
 c) \(0.333e^{j90\text{deg}}\)
 d) \(-0.051 + 0.256j\)
ECE 2210/00 homework # 12

Read about complex numbers and phasors in your textbook (sections 2.26 & 2.27, starting on p.159).

1. For the complex numbers \(z_1 := -4 + 5j \) and \(z_2 := 2 + 4j \) Determine the following
 a) Does \(z_1 \cdot z_2 \) equal \(|z_1| \cdot |z_2| \)?
 b) Does \(\frac{z_1}{z_2} \) equal \(\frac{|z_1|}{|z_2|} \)?
 c) Does \(z_1 + z_2 \) equal \(|z_1| + |z_2| \)?

2. a) Find the phasor for \(v(t) = 8.4 \cos(100 \cdot t - 90\text{-deg}) \) Express in both forms, polar and rectangular.
 b) The phasor representation of a current is \(i(t) = (5 + j12) \mu \text{A} \) Find the time-domain representation, \(i(t) \) at 600 Hz

3. Add or subtract the sinusoidal voltages using phasors. Draw a phasor diagram which shows all 3 phasors, and give your final answer in time domain form.
 a) \(v_1(t) = 1.5 \cdot V \cdot \cos(\omega \cdot t + 10\text{-deg}) \) \(v_2(t) = 3.2 \cdot V \cdot \cos(\omega \cdot t + 25\text{-deg}) \) Find \(v_3(t) = v_1(t) + v_2(t) \)
 b) \(v_1(t) = 1.5 \cdot V \cdot \cos(\omega \cdot t - 10\text{-deg}) \) \(v_2(t) = 3.2 \cdot V \cdot \cos(\omega \cdot t - 25\text{-deg}) \) Find \(v_4(t) = v_1(t) - v_2(t) \)
 c) \(v_1(t) = 50 \cdot V \cdot \cos(\omega \cdot t - 60\text{-deg}) \) \(v_2(t) = 24 \cdot V \cdot \cos(\omega \cdot t + 15\text{-deg}) \) Find \(v_3(t) = v_1(t) + v_2(t) \)
 d) \(v_1(t) = 0.9 \cdot V \cdot \cos(\omega \cdot t + 72\text{-deg}) \) \(v_2(t) = 1.2 \cdot V \cdot \cos(\omega \cdot t - 20\text{-deg}) \) Find \(v_3(t) = v_1(t) + v_2(t) \)
 e) \(v_1(t) = 0.9 \cdot V \cdot \cos(\omega \cdot t - 72\text{-deg}) \) \(v_2(t) = 1.2 \cdot V \cdot \cos(\omega \cdot t - 20\text{-deg}) \) Find \(v_4(t) = v_2(t) - v_1(t) \)

4. Express the impedance of a 5.2mH inductor at 60 Hz in polar form.

5. a) A capacitor impedance has a magnitude of 240Ω at a frequency of 1.8kHz. What is the value of capacitor?
 b) What value inductor has the same impedance magnitude at the same frequency?
 c) Find the reactance (magnitude of the impedance with + or - sign) of this capacitor and this inductor at 3.6kHz?
 d) What would be the total impedance of this inductance and this capacitance connected in series at 2.7kHz?

6. Find \(Z_{eq} \) in each case.
 a) \(V(j\omega) = 10 \cdot V \cdot e^{j0} \) \(f = 1\text{-kHz} \) \(R := 330 \Omega \) \(L := 100\text{-mH} \)
 b) \(V(j\omega) = 10 \cdot V \cdot e^{j0} \) \(f = 2\text{-kHz} \) \(R := 330 \Omega \) \(C := 0.22\text{-\mu F} \)
 c) \(V(j\omega) = 10 \cdot V \cdot e^{j0} \) \(f = 4\text{-kHz} \) \(R := 330 \Omega \) \(C := 0.03\text{-\mu F} \)
 d) \(V(j\omega) = 8 \cdot V \cdot e^{j0} \) \(f = 1.5\text{-kHz} \) \(L := 160\text{-mH} \) \(R := 4\text{-k\Omega} \) \(C := 0.03\text{-\mu F} \)

7. Find the current \(I(j\omega) \) in each case above.
8. a) Find Z. Hint: Find the total impedance \((R+Z)\) first.

\[Z := 50 \Omega e^{j \theta} \]

b) Which leads, current or voltage?

I.E. what is the phase angle between the voltage and current?

c) By how much?

\[28.636 \]

9. a) A resistor and a capacitor are connected in series to create an impedance of at a frequency \(f := 3 \text{ kHz} \) Find R and C.

\[Z := (60 + j 28) \Omega \]

b) A resistor and a capacitor are connected in parallel to create an impedance of at a frequency \(f := 3 \text{ kHz} \) Find R and C.

\[Z := 50 \Omega e^{j \theta} \]

 Hint: invert \(Z_{eq} \). Instead of solving this: \[50 / j \theta = \frac{1}{R + j \omega C} \]

\[\frac{1}{Z_{eq}} = 0.02 / j \theta = \frac{1}{R + j \omega C} \]

10. The phasor diagram at right shows the voltage and current in the circuit below.

Assume the load consists of a resistor in series with a reactive component and the frequency is 60 Hz.

a) What is the magnitude of the impedance?

b) What is the value of the resistor?

c) What is the reactive component (type and value)?

11. For the circuit shown, draw a phasor diagram showing \(V_s, I, V_R, \) and \(V_C \). Draw the voltages to scale so that you can show that they obey KVL.
Warning: This homework is longer than normal -- DO NOT put it off until the last minute.

1. For the circuit shown, find the following:
 a) At what frequency would the magnitude of the total impedance be 24.0Ω?
 b) At this frequency, what is the phase angle of the impedance?
 c) At this frequency, you want to add a capacitor in series to make the circuit appear purely resistive (the impedance has no imaginary component). Find the value of the capacitor.

2. You need to design a circuit in which the current \(i(t) \) leads the voltage \(v_S(t) \) by 36° of phase.
 a) What should go in the box: R, L, C?
 b) Find its value.

3. The phasor diagram at right shows the source voltage and two branch currents of a parallel circuit. Find the impedance of each of the two branches.

4. a) Find all the currents, \(I_1, I_2, \) and \(I_T \).
 b) Draw a phasor diagram showing \(I_1, I_2, \) and \(I_T \) to scale so that you can show that they obey KCL.

5. a) Find the AC current source, \(I_{in} \) in polar form.
 b) Find \(V_T \).
 c) Choose one:
 i) The source current leads the source voltage.
 ii) The source current lags the source voltage.
6. a) Find Z_I.

b) To make Z_I in the simplest way, what part(s) would you need? Just determine the needed part(s) from the list below and state why you made that choice, don't find the values.

- resistor
- capacitor
- inductor
- power supply
- voltmeter
- ammeter
- current source
- Thevenin resistor
- Ideal transformer
- voltmeter
- ammeter
- scope

c) Choose one:
 i) I_2 leads the source voltage (V_{in})
 ii) I_2 lags the source voltage (V_{in})

7. Find Z.

8. a) Find the total impedance of the circuit.

b) Find I_T.

9. Find Z_{eq} in simple polar form.

Answers
1. a) 11-kHz
 b) 60$^\circ$
 c) 0.0694-μF
2. a) C
 b) 6.12-μF
3. $Z_1 = (19.2 - 33.3-j) \cdot \Omega$
 $Z_2 = (46.0 + 19.6-j) \cdot \Omega$

4. a) $(0.197 + 0.138-j) \cdot \angle A + 0.096-A = 0.293 +0.138j \cdot \angle A$
5. a) $60 / 36.87^\circ$ mA
 b) $11.54 / 21^\circ$ V
 c) i)
6. a) $172 / 53.4^\circ$ Ω
 b) phase angle > 0, resistor and inductor
 c) i)
 d) ii)
7. $657 \Omega / 67.4^\circ$
 8. a) $21.86\Omega / -20.38^\circ$
 b) $0.457A / 20.38^\circ$
8. a) $382\Omega / -40.2^\circ$