Diodes are basically electrical check valves. They allow current to flow freely in one direction, but not the other. Check valves require a small forward pressure to open the valve. Similarly, a diode requires a small forward voltage (bias) to "turn on". This is called the forward voltage drop. There are many different types of diodes, but the two that you are most likely to see are silicon diodes and light-emitting diodes (LEDs). These two have forward voltage drops of about 0.7 V and 2 V respectively.

The electrical symbol for a diode looks like an arrow which shows the forward current direction and a small perpendicular line. The two sides of a diode are called the "anode" and the "cathode" (these names come from vacuum tubes). Most small
 diodes come in cylindrical packages with a band on one end that corresponds to the small perpendicular line, and shows the polarity, see the picture. Normal diodes are rated by the average forward current and the peak reverse voltage that they can handle. Diodes with significant current ratings are known as "rectifier" or "power" diodes. (Rectification is the process of making AC into DC.) Big power diodes come in a variety of packages designed to be attached to heat sinks. Small diodes are known as "signal" diodes because they're designed to handle small signals rather than power.

Diodes are nonlinear parts

So far in this class we've only worked with linear parts. The diode is definitely NOT linear, but it can be modeled as linear in its two regions of operation. If it's forward biased, it can be replaced by battery of 0.7 V (2 V for LEDs) which opposes the current flow. Otherwise it can be replaced by an open circuit. These are "models" of the actual diode. If you're not sure of the diode's state in a circuit, guess. Then replace it with the appropriate model and analyze the circuit. If you guessed the open, then the voltage across the diode model should come out less than $+0.7 \mathrm{~V}(2 \mathrm{~V}$ for LEDs). If you guessed the battery, then the current through the diode model should come out in the direction of the diode's arrow. If your guess doesn't work out right, then you'll have to try the other option. In a circuit with multiple diodes (say " n " diodes), there will

Constant-voltage-drop model

This is the most common diode model and is the only one we'll use in this class. It gives quite accurate results in most cases.
 right one. Try to guess right the first time.
1 Assume the diode is operating in one of the linear regions (make an educated guess).
2 Analyze circuit with a linear model od the diode.
3 Check to see if the diode was really in the assumed region.

4 Repeat if necessary.

Actual diode curve

The characteristics of real diodes are actually more complicated than the constant-voltage-drop model. The forward voltage drop is not quite constant at any current and the diode "leaks" a little current when the voltage is in the reverse direction. If the reverse voltage is large enough, the diode will "breakdown" and let lots of current flow in the reverse direction. A mechanical check valve will show similar characteristics. Breakdown does not harm the diode as long as it isn't overheated.

50-100s of volts, unless designed to break down	forward bias
$\left(\begin{array}{l} \text { zener } \\ \text { breakdown } \end{array}\right.$	${ }_{0.2}^{1.4} \underset{0.6}{\mathrm{valts}_{5}^{d .8}}$
reverse bias	Silicon pn junction diode, the most common type.

Zener diodes are special diodes designed to operate in the reverse breakdown region. Since the reverse breakdown voltage across a diode is very constant for a large range of current, it can be used as a voltage reference or regulator. Zener diodes are also used for over-voltage protection. In the forward direction zeners work the same as regular diodes.

I recommend that you try some of the DC analysis in the Diode Circuit Examples handout before you proceed here.

Diodes in AC Circuits

Diodes are often used to manipulate AC waveforms. We' II start with some triangular waveforms to get the general idea.

volts

Diode doesn' t conduct until in reaches 0.7 V , so 0.7 V is a dividing line between the two models of the diode.

$$
\begin{array}{r}
\text { slope }=\frac{0.7 \cdot \mathrm{~V}}{\mathrm{t}_{1}}=\frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{t}_{\mathrm{p}}} \\
\mathrm{t}_{1}=\frac{0.7 \cdot \mathrm{~V}}{\mathrm{~V}_{\mathrm{p}}} \cdot \mathrm{t}_{\mathrm{p}}
\end{array}
$$

Sometimes it' s helpful to figure out what the voltage across the diode would be if it never conducted (light dotted line).

$$
\mathrm{t}_{1}=\frac{0.7 \cdot \mathrm{~V}}{\mathrm{~V}_{\mathrm{p}} \cdot \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}} \cdot \mathrm{t} \mathrm{p}
$$

Rectifier Circuits \& Power Supplies Half-wave rectification
What if the input is a sine wave?
$V_{R L}$ is now $D C$, although a bit bumpy. Some things are better if they' re bumpy, but not roads and not DC voltages.

Rectification is the process of making DC from AC. Usually the AC is derived from the AC wall outlet (often through a transformer) and the DC is needed for electronic circuitry modeled by R_{L} here.

primary

A "filter" capacitor (usually a big electrolytic) helps smooth out the bumps, although it sure looks like we could a bit bigger one here. The remaining bumpiness is called "ripple", V_{r} is peak-to-peak ripple

Full-wave rectification

The "center tap" in the secondary of this transformer makes it easy to get full-wave rectification.

The center-tap transformer is also good for making \pm supplies

Bridge

A "bridge" circuit or "bridge rectifier" can give you full-wave rectification without a center-tap transformer, but now you loose another "diode drop"

Simple limiter circuits can be made with diodes.
A common input protection to protect circuit from excessive input voltages such as static electricity.

The input to the box marked "sensitive circuit" can' t get higher than the positive supply +0.7 V or lower than the negative supply -0.7 V .
Put a fuse in the $\mathrm{V}_{\text {in }}$ line and the diodes can make it blow, providing what' s known as "crowbar" protection.
Another example of crowbar protection:
If the input voltage goes above 16 V . the fuse will blow, protecting the circuitry.

Or, If the input voltage is hooked up backwards the fuse will blow, protecting the circuitry.

AM detector

Battery Isolator

Like you might find in an RV. One alternator is used to charge two batteries. When the alternator is not charging, the batteries, the circuits they are hooked to should be isolated from one another. If not, then one battery might discharge through the second, especially if second is bad. Also, you wouldn' t want the accessories in the RV to drain the starting battery, or your uncle George from South Dakota might never leave your driveway.

Battery Backup Power

Normally the power supply powers the load through D1. However, if it fails, the load will remain powered by the battery through D2. Finally, D3 and R may be added to keep the battery charged when the power supply is working. These sorts of circuits are popular in hospitals.

Diode Logic Circuits

Actually, both of the previous circuits are logic circuits as well.

And a coupling capacitor can remove the DC

"Flyback" Diode

Every time the switch opens the inductor current continues to flow through the diode for a moment. If the diode weren' there, then the current would arc across the switch.

ECE 2210 Diode Circuit Examples

Basic diode circuit analysis

1 Make an educated guess about each diode' s state.
conducting not conducting

$-$ current
or

$-0-$
$\mathrm{V}_{\mathrm{d}}<0.7 \mathrm{~V} \quad$ Check

Note: 0.7 V is for silicon junction diodes $\&$ will be different for other types. (2 V for LED)
If any of your guesses don' t work out right, then you' ll have to start over with new guesses. In a circuit with n diodes there will be 2^{n} possible states, all of which may have to be tried until you find the right one. Try to guess right the first time.

Ex1

Ex2
$\mathrm{R}:=2 \cdot \mathrm{k} \Omega$

Try forward-biased, conducting model

Doesn' t work, diode must be reverse biased.

Try forward-biased, conducting model

The current is in the forward direction, confirming the assumption.

Try reverse-biased, non-conducting model

In each of these examples, my first guess was pretty stupid. I did that intentionally to show the process. I expect that you can make better guess and thus save yourself some work.

Try forward-biased, conducting model

Check the diode current
$\mathrm{I}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{R}}=8.9 \cdot \mathrm{~mA} \quad \begin{array}{r}\text { Confirm }\end{array}$
Confirms diode is forward biased

ECE 2210 Diode Circuit Examples p2

Assume diode conducts:
Analyze
$\mathrm{V}_{\mathrm{R} 2}:=\mathrm{V}_{\mathrm{D}} \quad \mathrm{I}_{2}:=\frac{\mathrm{V}_{\mathrm{R} 2}}{\mathrm{R}_{2}}$

$$
\mathrm{V}_{\mathrm{R} 1}:=5 \cdot \mathrm{~V}-\mathrm{V}_{\mathrm{D}} \quad \mathrm{~V}_{\mathrm{R} 1}=4.3 \cdot \mathrm{~V} \quad \mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} \quad \mathrm{I}_{1}=4.3 \cdot \mathrm{~mA}
$$

We assumed conducting (assuming a voltage), so check the current.
$\mathrm{I}_{\mathrm{D}}:=\mathrm{I}_{1}-\mathrm{I}_{2} \quad \mathrm{I}_{\mathrm{D}}=3.6 \cdot \mathrm{~mA}>0$, so assumption was correct

Ex5 Now with an LED

Assume diode conducts
Analyze

$$
\begin{aligned}
& \text { Analyze } \\
& \mathrm{V}_{\mathrm{R} 2}:=\mathrm{V}_{\mathrm{D}} \quad \mathrm{I}_{2}:=\frac{\mathrm{V}_{\mathrm{R} 2}}{\mathrm{R}_{2}} \quad \mathrm{I}_{2}=2 \cdot \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{R} 1}:=5 \cdot \mathrm{~V}-\mathrm{V}_{\mathrm{D}} \quad \mathrm{~V}_{\mathrm{R} 1}=3 \cdot \mathrm{~V} \quad \mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} \quad \mathrm{I}_{1}=3 \cdot \mathrm{~mA}
\end{aligned}
$$

We assumed conducting (assuming a voltage), so check the current.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}}:=\mathrm{I}_{1}-\mathrm{I}_{2} \quad \mathrm{I}_{\mathrm{D}}=1 \cdot \mathrm{~mA} & >0, \text { so assumption was correct, } \\
& \text { but the current is probably too } \\
& \text { small to create noticeable light }
\end{aligned}
$$

Ex6 Regular diode, but smaller R_{1}

Assume diode conducts
Analyze
$\mathrm{V}_{\mathrm{R} 2}:=\mathrm{V}_{\mathrm{D}} \quad \mathrm{I}_{2}:=\frac{\mathrm{V}_{\mathrm{R} 2}}{\mathrm{R}_{2}} \quad \mathrm{I}_{2}=7 \cdot \mathrm{~mA}$
$\mathrm{V}_{\mathrm{R} 1}:=5 \cdot \mathrm{~V}-\mathrm{V}_{\mathrm{D}} \quad \mathrm{V}_{\mathrm{R} 1}=4.3 \cdot \mathrm{~V} \quad \mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} \quad \mathrm{I}_{1}=4.3 \cdot \mathrm{~mA}$

We assumed conducting (assuming a voltage), so check the current.

$$
\mathrm{I}_{\mathrm{D}}:=\mathrm{I}_{1}-\mathrm{I}_{2} \quad \mathrm{I}_{\mathrm{D}}=-2.7 \cdot \mathrm{~mA}<0, \text { so assumption was WRONG ! }
$$

Assume diode does not conduct

$\mathrm{I}_{\mathrm{D}}:=0 \cdot \mathrm{~mA}$
Analyze $\quad \mathrm{I}_{1}:=\frac{5 \cdot \mathrm{~V}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{I}_{2}:=\mathrm{I} 1_{1}$
We assumed not conducting (assuming a current), so check the voltage.
$\mathrm{V}_{\mathrm{R} 2}:=\mathrm{I}_{2} \cdot \mathrm{R}_{2} \quad \mathrm{~V}_{\mathrm{R} 2}=0.455 \cdot \mathrm{~V}<0.7 \mathrm{~V}$, so assumption was correct Actually, this final check isn' t necessary, since first assumption didn' t work, so this one had to.

You can safety say that diode D_{1} doesn' t conduct without rechecking later because no supply is even trying to make current flow through that diode the right way.

Assume both D_{2} and D_{3} conduct.

$$
\text { Analyze } \quad \mathrm{V}_{\mathrm{R} 1}:=\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{D} 2}-\mathrm{V}_{\mathrm{D} 2}
$$

$$
\mathrm{V}_{\mathrm{R} 1}=3.6 \cdot \mathrm{~V}
$$

$$
\begin{array}{ll}
\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} & \mathrm{I}_{1}=3.6 \cdot \mathrm{~mA} \\
\mathrm{I}_{2}:=\frac{\mathrm{V}_{\mathrm{D} 2}}{\mathrm{R}_{2}} & \mathrm{I}_{2}=2.333 \cdot \mathrm{~mA} \\
\mathrm{I}_{3}:=\frac{\mathrm{V}_{\mathrm{D} 3}}{\mathrm{R}_{3}} & \mathrm{I}_{3}=4.667 \cdot \mathrm{~mA}
\end{array}
$$

We assumed $\mathrm{D}_{1} \& \mathrm{D}_{2}$ conduct (assumed a voltage), so check currents.

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{D} 2}:=\mathrm{I}_{1}-\mathrm{I}_{2} & \mathrm{I}_{\mathrm{D} 2}=1.267 \cdot \mathrm{~mA}>0, \text { so assumption } \mathrm{OK} \\
\mathrm{I}_{\mathrm{D} 3}:=\mathrm{I}_{1}-\mathrm{I}_{3} & \mathrm{I}_{\mathrm{D} 3}=-1.067 \cdot \mathrm{~mA}<0, \text { so assumption wrong }
\end{array}
$$

Assume D_{2} conducts and D_{3} doesn' t .

Analyze $\quad \mathrm{I}_{2}:=\frac{\mathrm{V}_{\mathrm{D} 2}}{\mathrm{R}_{2}}$
$\mathrm{I}_{2}=2.333 \cdot \mathrm{~mA}$

$$
\mathrm{I}_{1}=3.739 \cdot \mathrm{~mA}
$$

Assumed D_{2} conducts, so check D_{2} current.

$$
\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{D} 2}}{\mathrm{R}_{1}+\mathrm{R}_{3}}
$$

$$
\mathrm{I}_{\mathrm{D} 2}:=\mathrm{I}_{1}-\mathrm{I}_{2}
$$

$\mathrm{I}_{\mathrm{D} 2}=1.406 \cdot \mathrm{~mA}>0$, so assumption OK
Assumed D_{3} doesn' t conduct, so checlD ${ }_{3}$ voltage.

$$
\mathrm{V}_{\mathrm{R} 3}:=\mathrm{I}_{1} \cdot \mathrm{R}_{3}
$$

$$
\mathrm{V}_{\mathrm{R} 3}=0.561 \cdot \mathrm{~V} \quad<0.7 \mathrm{~V}, \text { so OK }
$$

Once you find one case that works, you don' thave to try any others.

Zener Diodes

Zener diodes are special diodes designed to operate in the reverse breakdown region. Since the reverse breakdown voltage across the diode is very constant for a large range of current, it can be used as a voltage reference or regulator. Diodes are not harmed by operating in this region as long as their power rating isn' texceeded. In the forward direction zeners work the same as regular diodes.

Now there are three possible regions of operation:

Same basic diode circuit analysis

 1 Make an educated guess about each diode' s state.

2 Replace each diode with the appropriate model:
3 Redraw and analyze circuit.
4 Make sure that each diode is actually in the state you assumed:

$\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V} \quad 0.7 \mathrm{~V}>\mathrm{V}_{\mathrm{D}}>\mathrm{V}_{\mathrm{Z}}$
V_{Z}

Zener Diode Circuit Examples

Ex1 Typical shunt regulator circuit:

I_{1}

$\mathrm{V}_{\mathrm{Z}}=4.5 \cdot \mathrm{~V}$
$R_{L}:=500 \cdot \Omega$

Assume conducting in breakdown region

$$
\mathrm{v}_{\mathrm{D}}:=\mathrm{V}_{\mathrm{Z}}
$$

$$
\mathrm{I}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{I}_{\mathrm{L}}=9 \cdot \mathrm{~mA}
$$

$$
\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{S}^{-}} \mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{1}} \quad \mathrm{I}_{1}=22 \cdot \mathrm{~mA}
$$

Assumed a conducting region, so check the current to see if the current flows in the direction shown.

$$
\mathrm{I}_{\mathrm{D}}:=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{L}} \quad \mathrm{I}_{\mathrm{D}}=13 \cdot \mathrm{~mA}>0, \text { so assumption OK }
$$

Ex2 What if R_{L} is smaller? $\quad \mathrm{R}_{\mathrm{L}}:=150 \cdot \Omega$
Assume conducting in breakdown region
$\mathrm{V}_{\mathrm{D}}:=\mathrm{V}_{\mathrm{Z}} \quad \mathrm{I}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{\mathrm{L}}} \quad \quad \mathrm{I}_{\mathrm{L}}=30 \cdot \mathrm{~mA}$ $\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{1}} \quad \mathrm{I}_{1}=22 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D}}:=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{L}} \quad \mathrm{I}_{\mathrm{D}}=-8 \cdot \mathrm{~mA} \quad<0$, so assumption is WRONG !

Assume not conducting

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{L}}} \quad \mathrm{I}_{1}=25 \cdot \mathrm{~mA}
$$

Assumed a non-conducting region, so check the voltage to see if it' s in the right range.

$$
\mathrm{V}_{\mathrm{D}}: \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{L}}} \cdot \mathrm{~V}_{\mathrm{S}} \quad \mathrm{~V}_{\mathrm{D}}=3.75 \cdot \mathrm{~V}<\mathrm{V}_{\mathrm{Z}}=4.5 \cdot \mathrm{~V}
$$

Ex3 What if V_{S} is smaller instead of R_{L} ?
$R_{L}:=500 \cdot \Omega$
Assume conducting in breakdown region $\quad V_{D}:=V_{Z} \quad I_{L}:=\frac{V_{Z}}{R_{L}} \quad I_{L}=9 \cdot m A$ $\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{1}} \quad \mathrm{I}_{1}=6 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D}}:=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{L}} \quad \mathrm{I}_{\mathrm{D}}=-3 \cdot \mathrm{~mA} \quad<0$, so assumption is WRONG !

Assume not conducting

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{1}:=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{L}}} \quad \mathrm{I}_{1}=8 \cdot \mathrm{~mA}
$$

Assumed a non-conducting region, so check the voltage to see if it' s in the right range.

$$
\mathrm{V}_{\mathrm{D}}:=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{L}}} \cdot \mathrm{~V}_{\mathrm{S}}
$$

$$
\mathrm{V}_{\mathrm{D}}=4 \cdot \mathrm{~V}<\mathrm{V}_{\mathrm{Z}}=4.5 \cdot \mathrm{~V}
$$

so this assumption is OK

Exam-type Diode Circuit Examples

On an exam, I usually tell you what assumptions to make about the diodes, then you can show that you know how to analyze the circuit and test those assumptions. Since everyone starts with the same assumptions, everyone should do the same work.

In the circuit shown, use the constant-voltage-drop model for the silicon diode.
a) Assume that diode D_{1} does NOT conduct.

Assume that diode D_{2} does conduct.
Find $\mathrm{V}_{\mathrm{R} 2}, \mathrm{~V}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 1}, \& \mathrm{I}_{\mathrm{D} 2}$, based on these assumptions. Stick with these assumptions even if your answers come out absurd. Hint: think in nodal voltages.

$$
\mathrm{V}_{\mathrm{R} 2}=
$$

$V_{\text {R1 }}$ \qquad
${ }^{\mathrm{R}} \mathrm{R}=$ \qquad

$I_{D 2}=$ \qquad

Solution to a)

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{R} 2}:=\mathrm{V}_{2}-0.7 \cdot \mathrm{~V}_{2} & \mathrm{~V}_{\mathrm{R} 2}=1.3 \cdot \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R} 1}:=\mathrm{V}_{1}-\mathrm{V}_{\mathrm{R} 2} & \mathrm{~V}_{\mathrm{R} 1}=0.5 \cdot \mathrm{~V} \\
\mathrm{I}_{\mathrm{R} 1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} & \mathrm{I}_{\mathrm{R} 1}=10 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{R} 2}:=\frac{\mathrm{V}_{\mathrm{R} 2}}{\mathrm{R}_{2}} & \mathrm{I}_{\mathrm{R} 2}=5 \cdot \mathrm{~mA} \\
& \\
\mathrm{I}_{\mathrm{D} 2}:=\mathrm{I}_{\mathrm{R} 2}-\mathrm{I}_{\mathrm{R} 1} & \mathrm{I}_{\mathrm{D} 2}=-5 \cdot \mathrm{~mA}
\end{array}
$$

b) Based on your numbers above, does it look like the assumption about D_{1} was correct? How do you know? (Specifically show a value which is or is not within a correct range.)
yes no
(circle one)
yes $\quad \mathrm{V}_{\mathrm{D} 1}=\mathrm{V}_{\mathrm{R} 1}=0.5 \cdot \mathrm{~V}<0.7 \mathrm{~V}$
c) Based on your numbers above, does it look like the assumption about D_{2} was correct? yes no How do you know? (circle one)

$$
\text { no } \quad \mathrm{I}_{\mathrm{D} 2}=-5 \cdot \mathrm{~mA}<0
$$

d) Based on your answers to b) and c), which (if any) of the following was not correctly calculated in part a.
$\mathrm{V}_{\mathrm{R} 2} \underset{\text { (circle any number of answers) }}{\mathrm{V}_{\mathrm{R} 1}} \mathrm{I}_{\mathrm{R} 1} \quad \mathrm{I}_{\mathrm{D} 2}$

Circle all in this case

Assume that diode D_{1} is conducting and that diode D_{2} is not conducting.
a) Find $V_{R 1}, I_{R 1}, I_{R 3}, l_{D 1}, V_{R 2}$ based on these assumptions. Do not recalculate if you find the assumptions are wrong.

$$
\mathrm{V}_{\mathrm{R} 1}=
$$

\qquad
${ }^{\mathrm{I}} \mathrm{R}=$ \qquad
$I_{\text {R3 }}=$
$\mathrm{I}_{\mathrm{D} 1}=$ \qquad

$$
\mathrm{V}_{\mathrm{R} 2}=
$$

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{R} 1}:=0.7 \cdot \mathrm{~V} & \\
\mathrm{I}_{\mathrm{R} 1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} & \mathrm{I}_{\mathrm{R} 1}=3.5 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{R} 3}:=\frac{\mathrm{V}_{\mathrm{in}}-0.7 \cdot \mathrm{~V}}{\mathrm{R}_{2}+\mathrm{R}_{3}} & \mathrm{I}_{\mathrm{R} 3}=4.6 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{D} 1}:=\mathrm{I}_{\mathrm{R} 3}-\mathrm{I}_{\mathrm{R} 1} & \mathrm{I}_{\mathrm{D} 1}=1.1 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{R} 2}:=\mathrm{I}_{\mathrm{R} 3} & \\
\mathrm{~V}_{\mathrm{R} 2}:=\mathrm{I}_{\mathrm{R} 2} \cdot \mathrm{R}_{2} & \mathrm{~V}_{\mathrm{R} 2}=0.46 \cdot \mathrm{~V}
\end{array}
$$

(circle one)
b) Was the assumption about D_{1} correct? yes
no
How do you know? (Specifically show a value which is or is not within a correct range.)

$$
\text { yes } \quad I_{R 2}=4.6 \cdot \mathrm{~mA}>0
$$

c) Was the assumption about D_{2} correct?

How do you know?

$$
\begin{aligned}
\begin{aligned}
\text { yes } \\
\text { (circle one) }
\end{aligned} & \text { no }
\end{aligned}
$$

$$
\text { yes } \quad V_{D 2}=V_{R 2}=0.46 \cdot V<0.7 \mathrm{~V}
$$

d) Based on your answers to b) and c), which (if any) of the following was not correctly calculated in part a.
$\mathrm{V}_{\mathrm{R} 1}$
$\mathrm{I}_{\mathrm{R} 1}$
${ }^{\text {I }}$ R3
${ }^{\mathrm{I}} \mathrm{D}^{2}$
$\mathrm{V}_{\mathrm{R} 2}$
(circle any number of answers)

Circle none in this case

A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

If diode doesn't conduct:

Positive half
Diode conducts at: $0.7 \cdot \mathrm{~V}$ input Maximum:

Negative half
Diode conducts at: $-4 \cdot \mathrm{~V}$ input at time: $20 \cdot \mathrm{~ms}-\frac{4 \cdot \mathrm{~V}}{10 \cdot \mathrm{~V}} \cdot 10 \cdot \mathrm{~ms}=16 \cdot \mathrm{~ms}$ Maximum:

at time: $\quad \frac{0.7 \cdot \mathrm{~V}}{10 \cdot \mathrm{~V}} \cdot 10 \cdot \mathrm{~ms}=0.7 \cdot \mathrm{~ms}$

A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

If diode doesn't conduct:

$$
\text { When: } \quad \mathrm{v}_{\text {in }}:=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}} \cdot 2 \cdot \mathrm{~V} \quad \mathrm{v}_{\text {in }}=5 \cdot \mathrm{~V} \quad \text { at: } 5 \cdot \mathrm{~ms} \quad \text { Diode begins to conduct }
$$

When diode conducts:

Silicon atoms

Silicon atoms each have 4 valence electrons (electrons in their outermost shell). That leaves 4 spaces in the outer shell of 8 . This makes silicon a very reactive chemical, like carbon, which has the same valence configuration.

Silicon crystals

Each atom covalently bonds with four neighboring atoms to form a tetrahedral crystal, which we'll represent in 2D.

2-dimensional representation

In the pure, "intrinsic" crystal, practically all the electrons are used in bonds and all the spaces are filled, which leaves almost no electrons free to move and thus no way to make current flow.

By the effects of heat, light and/or large electric fields, a few electrons do break free of the bonds and become "free" carriers. That is, they're free to move about crystal and "carry" an electrical current.

carrier movement

more carrier movement

Interestingly, the space that was vacated by the electron also acts like a carrier. This pseudo-carrier is called a "hole" and it acts like a positively charged carrier.
Unless there's a lot of heat or light, the intrinsic silicon is still a very bad conductor.
Silicon is considered a semiconductor.

Doping

p-type

Some atoms, like boron and aluminum naturally have 3 valence electrons in their outer shells.

If you replace some of the silicon atoms in a crystal with boron there won't be quite enough electrons to fill the crystalline bond structure and unfilled spaces will act just like free holes. This "doped" silicon crystal is now called an p-type semiconductor. The p refers to the "extra" "positive" carriers.

Diode Physics (The simple version)

n-type

Some atoms, like arsenic and phosphorus naturally have 5 valence electrons in their outer shells.

If you replace some of the silicon atoms in a crystal with arsenic the 5th electron doesn't fit into the crystalline bond structure and is therefore free to roam about and be a carrier. This "doped" silicon crystal is now called an n-type semiconductor. The n refers to the "extra" negative carriers.

Diode Physics (The simple version)

It turns out that the free carriers are the most important things in the semiconductor crystals, so we can simplify the drawings to show only these free carriers.

PN Junction

When a p-type semiconductor is created next to an n-type, some of the free electrons from the n side will cross over and fill some of the free holes on the p side. This makes the p side negatively charged and leaves the n side positively charged. When the voltage across the junction reaches about 0.7 V the electrons find it too difficult to move against the charge and the process stops.

A region near the junction is now depleted of carriers and (surprise) is called the depletion region.

Reverse bias

This pn junction is now a diode. If you place an external voltage across the diode in the reverse bias direction, the depletion region gets bigger and no current flows.
This reverse bias region can be used as a heat or light sensor since the only current flow should be due to a few carriers produced by these effects.

The reverse biased diode can also be used as a voltage variable capacitor since it is essentially an insulator (the depletion region) sandwiched between two conducting regions.

Forward bias

If you place an external voltage across the diode in the forward bias direction, the depletion region shrinks until your external voltage reaches about 0.7 V . After that the diode conducts freely..

circles represent free holes
n-type

dots represent free electrons

"positive" holes move toward the negative voltage
negative electrons move toward the positive voltage

With reverse bias the depletion region gets bigger

With forward bias the depletion region gets smaller and eventually (at about 0.7 V) conducts freely.

\qquad Name:

Fill in the blanks in the following circuits. For some of the simple calculations, you may simply write down the answer without showing work.
1.

Assume the diodes are silicon with a 0.7 V forward voltage drop:
Assume the LEDs have a 2 V forward voltage drop:
2.
$I_{D}=$ \qquad
3.

$\mathrm{I}=$ \qquad
A.Stolp rev b
$\sim 0.7 \mathrm{~V}$
$\xrightarrow{+\mathrm{H}^{-}}$

Note: In problems 5 and 6 you'll have to make some assumptions about which diode(s) is/are conducting. Work the problem with those assumptions and see if you arrive at impossible answers. If so, change your assumptions and try again.

There are four possible assumptions.

1. Neither diode conducts.
2. Only D_{1} conducts.
3. Only D_{2} conducts.
4. Both diodes conduct.

NOTE: You don't have to try all four possibilities. As soon as you find one that works, that's the answer. So make your best guess first.
6. $\mathrm{I}_{\mathrm{T}}=$ \qquad

$\mathrm{I}_{\mathrm{R} 2}=$ \qquad
7. $\mathrm{I}_{\mathrm{T}}=$

8. $\mathrm{V}_{\mathrm{R}}=$

10. $\mathrm{I}_{\mathrm{R} 1}:=30 \cdot \mathrm{~mA} \quad \mathrm{R}_{1}=$

11. $\mathrm{V}_{\mathrm{R}}=$ \qquad

12. $I_{R}=$

13. $\quad I_{R}=$

Warning: If I_{D} turns out negative, it is actually 0 and you must recalculate everything else.

You will need more paper for the next two problems, add a sheet or two.
14. Assume that diode D_{1} does conduct. Assume that diode D_{2} does NOT conduct.
a) Find $\mathrm{V}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 3}, \mathrm{I}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{R} 2}$ based on these assumptions.

Stick with these assumptions even if your answers come out absurd.

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{R} 1}=? & \mathrm{I}_{\mathrm{R} 1}=? & \mathrm{I}_{\mathrm{R} 3}=? \\
\mathrm{~V}_{\mathrm{R} 2}=?
\end{array}
$$

b) Was the assumption about D_{1} correct? yes or no

How do you know? (Specifically show a value which is or is not within a correct range.)
c) Was the assumption about D_{2} correct? yes or no

How do you know?
15. Assume that diodes D_{1} and $\mathrm{D}_{2} \mathrm{DO}$ conduct.

Assume that diode D_{3} does NOT conduct.
a) Find $\mathrm{I}_{\mathrm{R} 2}, \mathrm{I}_{\mathrm{D} 2}, \mathrm{I}_{\mathrm{D} 1}, \& \mathrm{~V}_{\mathrm{D} 3}$ based on these assumptions. Stick with these assumptions even if your answers come out absurd.
$\mathrm{I}_{\mathrm{R} 2}=? \quad \mathrm{I}_{\mathrm{D} 2}=? \quad \mathrm{I}_{\mathrm{D} 1}=? \quad \mathrm{~V}_{\mathrm{D} 3}=$?

b) Based on the numbers above, was the assumption about D_{1} correct? yes no How do you know? (Show a value \& range.)
c) Was the assumption about D_{2} correct? yes no How do you know? (Show a value \& range.)
d) Was the assumption about D_{3} correct? yes no How do you know? (Show a value \& range.)
e) Based on your answers to parts b), c) \& e):
i) The real $\mathrm{I}_{\mathrm{R} 2}<\mathrm{I}_{\mathrm{R} 2}$ calculated in part a.
iii) The real $I_{R 2}>I_{R 2}$ calculated in part a.
ii) The real $I_{R 2}=I_{R 2}$ calculated in part a.

You do not need to justify your answer.

Answers

$1 \quad \mathrm{~V}_{\mathrm{D}}:=0.7 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{R}}:=3.3 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}:=10 \cdot \mathrm{~mA}$
3. $\mathrm{V}_{\mathrm{D}}:=0.7 \cdot \mathrm{~V}^{2} \quad \mathrm{~V}_{\mathrm{R}}=7.3 \cdot \mathrm{~V} \quad \mathrm{I}:=14.3 \cdot \mathrm{~mA}$
5. $\mathrm{V}_{\mathrm{D} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{D} 2}:=-1.3 \cdot \mathrm{~V} \quad \mathrm{I}_{1}:=42.3 \cdot \mathrm{~mA}$
6. $\mathrm{I}_{\mathrm{D} 2}:=0 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 2}:=13.8 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 3}:=9.83 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D} 2}:=-2.17 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{T}}:=23.6 \cdot \mathrm{~mA}$
7. $\mathrm{V}_{\mathrm{D} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{D} 2}:=0.7 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 1}:=0 \cdot \mathrm{~mA}$
8. $\mathrm{V}_{\mathrm{R}}:=4 \cdot \mathrm{~V} \quad \mathrm{R}:=267 \cdot \Omega$
10. $\mathrm{R}_{1}:=233 \cdot \Omega \quad \mathrm{R}_{3}:=150 \cdot \Omega$
11. $\mathrm{V}_{\mathrm{R}}:=6 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}:=50 \cdot \mathrm{~mA} \quad \mathrm{R}:=120 \cdot \Omega \quad \mathrm{P}_{\mathrm{R}}:=0.3 \cdot \mathrm{~W} \quad \mathrm{P}_{\mathrm{D}}:=0.6 \cdot \mathrm{~W}$
12. $\mathrm{I}_{\mathrm{L}}:=40 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R}}:=50 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D}}:=10 \cdot \mathrm{~mA} \quad \mathrm{P}_{\mathrm{R}}:=0.3 \cdot \mathrm{~W} \quad \mathrm{P}_{\mathrm{D}}:=0.12 \cdot \mathrm{~W}$
13. $\mathrm{I}_{\mathrm{D}}:=0 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{R}}:=56.3 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{L}}:=11.3 \cdot \mathrm{~V} \quad \mathrm{P}_{\mathrm{R}}:=0.38 \cdot \mathrm{~W} \quad \mathrm{P}_{\mathrm{D}}:=0 \cdot \mathrm{~W}$
14. a) $\mathrm{V}_{\mathrm{R} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 1}:=14 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R} 3}:=6 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D} 1}:=-8 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{R} 2}:=0.9 \cdot \mathrm{~V} \quad$ b) $n 0 \quad \mathrm{I}_{\mathrm{D} 1}=-8 \cdot \mathrm{~mA}<0$
c) no $\mathrm{V}_{\mathrm{D} 2}=\mathrm{V}_{\mathrm{R} 2}=0.9 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
15. a) $\mathrm{I}_{\mathrm{R} 2}:=30 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D} 2}:=-4 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D} 1}:=26 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D} 3}:=0.92 \cdot \mathrm{~V}$

ECE 2210 homework \# DO1 p. 4
b) yes $\mathrm{I}_{\mathrm{D} 1}:=26 \cdot \mathrm{~mA}>0$
c) no $\quad \mathrm{I}_{\mathrm{D} 2}:=-4 \cdot \mathrm{~mA}<0$
d) no $\mathrm{V}_{\mathrm{D} 3}:=0.92 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
e) ii)
\qquad Name: \qquad
Assume the diodes are silicon with a 0.7 V forward voltage drop:

$$
\begin{gathered}
\sim 0.7 V \\
+\underset{\sim}{+}+
\end{gathered}
$$

Assume the LEDs have a 2 V forward voltage drop:

1. The input voltage to the circuit below is shown at right (dotted line). Show the output voltage across the resistor. Make it accurate and label the important voltages and times. You can draw your answer right on my drawing, that's why the input is shown as a dotted line.

2. The voltage waveform shown (dotted line) is applied to the circuit. Accurately draw the output voltage you expect to see across the 20Ω resistor. Label the important voltages and times.

ECE 2210 homework \# DO2, p3

4. A voltage waveform (dotted line) is applied to the circuits shown. Accurately draw the output waveform $\left(\mathrm{v}_{\mathrm{o}}\right)$ you expect to see. Label important times and voltage levels.

ECE 2210 homework \# DO2, p3

ECE 2210 homework \# DO2, p4

5. A voltage waveform (dotted line) is applied to the circuits shown. Accurately draw the output waveform (v_{o}) you expect to see.
Label important times and voltage levels.

Answers

1 Straight lines between the following points: ($0 \mathrm{~ms}, 0 \mathrm{~V}$), ($0.7 \mathrm{~ms}, 0 \mathrm{~V}$), ($2 \mathrm{~ms}, 1.3 \mathrm{~V}$), ($3.3 \mathrm{~ms}, 0 \mathrm{~V}$), ($8.7 \mathrm{~ms}, 0 \mathrm{~V}$), then ramps up as between $0.7 \mathrm{~ms} \& 2 \mathrm{~ms}$.
2. Straight lines between the following points: ($0 \mathrm{~ms}, 0 \mathrm{~V}$), ($1 \mathrm{~ms}, 0 \mathrm{~V}$), ($10 \mathrm{~ms}, 4.2 \mathrm{~V}$), ($10 \mathrm{~ms}, 0 \mathrm{~V}$), ($21 \mathrm{~ms}, 0 \mathrm{~V}$), then ramps up as between $0.7 \mathrm{~ms} \& 10 \mathrm{~ms}$.
3. Straight lines between the following points: $(0 \mathrm{~ms}, 0 \mathrm{~V}),(6 \mathrm{~ms}, 3 \mathrm{~V}),(16 \mathrm{~ms}, 4.875 \mathrm{~V}),(16 \mathrm{~ms}, 0 \mathrm{~V}),(17.4 \mathrm{~ms},-0.7 \mathrm{~V}),(32 \mathrm{~ms},-3.438 \mathrm{~V})$, $(32 \mathrm{~ms}, 0 \mathrm{~V}),(38 \mathrm{~ms}, 3 \mathrm{~V})$, then ramps up as between $6 \mathrm{~ms} \& 16 \mathrm{~ms}$.
4. Straight lines between the following points: $(0 \mathrm{~ms}, 0),(2.86 \mathrm{~ms}, 2 \mathrm{~V}),(10 \mathrm{~ms}, 2 \mathrm{~V}),(10 \mathrm{~ms},-3 \mathrm{~V}),(19 \mathrm{~ms},-0.7 \mathrm{~V}),(22.86 \mathrm{~ms}, 2 \mathrm{~V})$, flat at 2
5. Straight lines between the following points: ($0 \mathrm{~ms}, 1.3 \mathrm{~V}$), ($0.2 \mathrm{~ms}, 1.3 \mathrm{~V}$), ($0.4 \mathrm{~ms}, 3.3 \mathrm{~V}$), $(0.4 \mathrm{~ms}, 1.3 \mathrm{~V}),(1 \mathrm{~ms}, 1.3 \mathrm{~V})$.

ECE 2210 homework \# DO2, p4

