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ECE 2210 Frequency Response, Filters  &  Bode Plots
Frequency Response

In the Capacitors lab you made a "frequency dependent voltage divider" whose output was not the same for all 
frequencies of input.  You made a graph of the output voltage as a function of the input frequency.  That was a 
frequency response graph of the circuit.  You made similar graphs in the Resonance lab.  These graphs help show the 
relationship of the output to the input as a function of frequency.  This relationship is known as the frequency response 
of the circuit.  You may have heard the term used before in connection with speakers or microphones.  All electrical and 
mechanical systems have frequency response characteristics.  Sometimes the frequency response can be quite 
dramatic, like the Tacoma Narrows bridge.

Filter Circuits
A circuit which passes some frequencies and filters out other frequencies is called (surprise, surprise) a "filter" and this 
selection and rejection of frequencies is called "filtering".  The tone or equalization controls on your stereo are frequency 
filters.  So are the tuners in TVs and radios.

If a filter passes high frequencies and rejects low frequencies, then it is a high-pass filter.  Conversely, if it passes low 
frequencies and rejects high ones, it is a low-pass filter.  A filter that passes a range or band of frequencies and rejects 
frequencies lower or higher than that band, is a band-pass filter.  The opposite of this is a band-rejection filter, or if the 
band is narrow, a notch filter or trap.

Look at the circuit at right.  At low frequencies the impedance of the inductor is 
low and the output voltage is essentially shorted to ground.  At high frequencies 
the impedance of the inductor is high and the output is about the same as the 
input.  This is a high-pass filter.  We can determine the relationship between 
the input and output:

R

L

Z L = ..j ω L

V out = .
..j ω L

R ..j ω L
V in OR:

V out
V in

=
..j ω L

R ..j ω L
= H( )ω

= The "Transfer Function"

A transfer function is a general term used for any linear system that has an input and an output.  It is simply the ratio 
of output to input.  The idea is that if you multiply the input by the transfer function, you get the output.

output is proportional 
to frequencyH( )ω =

..j ω L

R ..j ω L
At low frequencies: R >> .j ωL and H( )ω ~

..j ω L

R

output is about the 
same as the input.At high frequencies: R << .j ωL and H( )ω ~

..j ω L

..j ω L
= 1

Naturally, a plot of the transfer function verses frequency would be a handy thing.  You've already made similar plots in 
the lab.  It turns out that these plots are best done on a log-log scale.  Unfortunately, they are actually plotted on a 
semilog scale using a special unit in the vertical axis called the decibel  (dB) and the log is built into this dB unit.  The 
dB unit doesn't really simplify things, but it is widely used and you'll need to know about it, so here goes.

Decibels
Your ears respond to sound logarithmically, both in frequency and in intensity.
Musical octaves are in ratios of two.  "A" in the middle octave is 220 Hz, in the next, 440 Hz,  then 880 Hz, etc...
It takes about ten times as much power for you to sense one sound as twice as loud as another.

10x power ~ 2x loudness
A bel is such a 
10x ratio of power. The bel is named for Alexander Graham 

Bell, who did original research in hearing.Power ratio expressed in bels  = log
P 2

P 1
bels

It is a logarithmic expression of a unitless ratio (like the magnitude of H(ω) or gain of an amplifier).

The bel unit is never actually used, instead we use the decibel (dB, 1/10th of a bel).

Power ratio expressed in dB  = .10 log
P 2

P 1
dB
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dB are also used to express voltage and current ratios, which is related to power when squared. P =

V2

R
= .I2 R

Voltage ratio expressed in dB  = .10 log
V 2

2

V 1
2

dB = .20 log
V 2

V 1
dB

These are the most 
common formulas used 
for dBCurrent ratio expressed in dB  = .20 log

I 2

I 1
dB

Some common ratios expressed as dB

=.20 log
1

2
3.01 dB =10

3
20 0.708 =.20 log 2 3.01 dB =10

.3 dB
20 1.413

=.20 log
1

2
6.021 dB =10

6
20 0.501 =.20 log( )2 6.021 dB =10

.6 dB
20 1.995

=.20 log
1

10
20 dB =10

20
20 0.1 =.20 log( )10 20 dB =10

.20 dB
20 10

=.20 log
1

100
40 dB =10

40
20 0.01 =.20 log( )100 40 dB =10

.40 dB
20 100

Other dB-based units
You may have encountered dB as an absolute measure of sound intensity (Sound Pressure Level or SPL).  In that 
case the RMS sound pressure is compared as a ratio to a reference of 2 x 10-5 Pascals.

dBm is another absolute power scale expressed in dB.  Powers are referenced to 1mW. 

Volume Units (VU) are dBm with the added spec that the load resistor is 600Ω. 

Bode Plots
Named after Hendrik W. Bode (bo-dee), bode plots are just frequency response curves made on semilog paper where 
the  horizontal axis is frequency on a log10 scale and the vertical axis is either dB or phase angle.  The plots are 
nothing special, but the method that Bode came up with to make them quickly and easily is special.  We aren't going 
to bother with the phase-angle plots in this class, but since the bode method of making frequency plots is so simple it's 
worth our time to see how it's done.  

Basically, these are the steps:
1. Find the transfer function.
2. Analyze the transfer function to find "corner frequencies" and use these to divide the frequency into ranges.
3. Simplify and approximate the magnitude of the transfer function in each of these ranges.
4. Draw a "straight-line approximation" of the frequency response curve.
5. Use a few memorized facts to draw the actual frequency response curve. 

The best way to learn the method is by examples.

Ex. 1
V out
V in

=

1
..j ω C

1
..j ω C

R

=
1

1 .R ( )..j ω C
= H( )ω = The "Transfer Function"

R .100 kΩ
C ..04 µF

corner frequency is where real = imaginary (in denominator in this case)

1 = ..ω c R C ω c
1
.R C

=ω c 250
rad

sec
So... H( )ω 1

1 .j
ω

.250
rad

sec
ωc is also called a "pole" frequency

The transfer function is said to have one "pole" at ωc
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To make a straight-line approximation of the magnitude of H(ω) we'll approximate |H(ω)| in two regions, one below the 
corner frequency, and one above the corner frequency.  Keep only the real or only the imaginary part of the denominator, 
depending on which is greater.

below the corner frequency: ω < ω c H( )ω ~
1

1
H( )ω ~ 1 =.20 log( )1 0 dB

above the corner frequency: ω > ω c H( )ω ~
1

.j
ω

.250
rad

sec

H( )ω ~ .1

ω
.250
rad

sec
inversely 
proportional to ω. 

Inverse proportionality is a straight 1 to 1 down slope on a log-log plot, with dB it's a only slightly different.  Since 10x 
corresponds to 20 dB, the line goes down 20 dB for every 10x increase in frequency (called a decade).

That's all you need to make the straight-line approximation shown in the plot below. (If you know the slope)

Try some values above 
   the corner frequency: =.20 log .1

.10 ω c

.250
rad

sec
20 dB =.20 log .1

.100 ω c

.250
rad

sec
40 dB

The slope above the corner frequency is -20 dB per "decade".
A decade is a 10x increase in frequency.  
This slope is also -6dB per "octave" (a 2x increase in frequency).

Let's find the actual magnitude of H(ω) 
  right at the corner frequency (H(ωc)): ω = ω c H( )ω =

1

1 .j
ω c

.250
rad

sec

=
1

1 .j 1

H( )ω =
1

2
=.20 log

1

2
3.01 dB

1 10 100 1 103 1 104 1 105 1 106
60

40

20

0

250

dBMagnitude plot

H( )ω -3dB

Straight-line 
approximation ____

Actual _ _ _ _

250
rad

sec
ω
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Ex. 2

C .0.2 µF V R
V S

= .50
R

1
..j ω C

R

=
.50 ( ).R ( )..j ω C

1 .R ( )..j ω C
= H( )ω

Transfer function 
has one pole at ωcR .10 kΩ

corner frequency is where real = imaginary

1 = ..ω c R C ω c
1
.R C

=ω c 500
rad

sec

So... H( )ω

..50 j
ω

.500
rad

sec

1 .j
ω

.500
rad

sec

=
..50 j ω

.500
rad

sec
.j ω

OR: H( )ω

..50 j
ω

ω c

1 .j
ω

ω c

ω < ω c H( )ω ~

..50 j
ω

.500
rad

sec

1
=

...0.1
sec

rad
j ω

1
H( )ω ~ ..0.1

sec

rad
ω

Proportional to ω.  That's all we need to know here.  This 
proportionality to ω will result in a +20 dB per decade 
slope for all frequencies below the corner frequency

ω > ω c H( )ω ~

..50 j
ω

.500
rad

sec

.j
ω

.500
rad

sec

H( )ω ~ 50 =.20 log( )50 33.98 dB The "pass band" 

Actual value at the corner frequency

ω = ω c H( )ω =
..50 j ω

.500
rad

sec
.j ω

= =
.50 j

1 .j 1
25 +25j =25 .25 j 35.355 =.20 log( )35.355 30.97 dB

3 dB lower than the 
magnitude in the pass band

1 10 100 1 103 1 104 1 105 1 106
10

0

10

20

30

40
 500Magnitude plot

H( )ω dB
34dB

31dB

Straight-line 
approximation ____

Actual _ _ _ _

rad

secω
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Ex. 3 The transfer function may already be worked out: H( )f .10

1 .j
f
.10 Hz

1 .j
f
.500 HzCould come from 

a circuit like this:

The real and imaginary parts of the numerator are 
equal at the one corner frequency (called a "zero")

1 = .j
f c
.10 Hz

f c1
.10 Hz

The real and imaginary parts of the denominator 
are equal at the other corner frequency (pole)

1 = .j
f c

.500 Hz
f c2

.500 Hz

There are now three regions to approximate |H(f)|

Below the first corner frequency: f < .10 Hz H( )f ~ .10
1

1
= 10 =.20 log( )10 20 dB

Between the corner frequencies: .10 Hz < f < .500 Hz H( )f ~ .10

.j
f

10

1
= f proportional to f 

Above the second corner frequency: .1000 Hz < f H( )f ~ = 500 =.20 log( )500 53.98 dB.10

.j
f

10

.j
f

500

1 10 100 1 103 1 104 1 105 1 106
0

10

20

30

40

50

60
 500

Magnitude plot dB
54dB

H( )f 51dB

Straight-line 
approximation ____

Actual _ _ _ _

23dB

f (Hz)
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Ex. 4

A Transfer function of a typical amplifier: H( )ω
...j ω 0.182 sec

.1
.j ω

..6.875 104 rad

sec

1
.j ω

.416.67
rad

sec

ω C1
.416.67
rad

sec

ω C2
..6.875 104 rad

sec

Between the two poles (passband): H( )ω ~ =
..j ω i 0.182

.( )1
.j ω i

416.67

75.834 =.20 log( )75.834 37.6

Below ωC1 H( )ω ~
..j ω 0.182

.( )1 ( )1
proportional to ω 

Above ωC2 H( )ω ~
..j ω 0.182

.
.j ω

.6.875 104

.j ω
416.67

inversely proportional to ω 

1 10 100 1 103 1 104 1 105 1 106 1 107
20

10

0

10

20

30

40
417 68800

Magnitude plot 37.6dBdB
34.6dBH( )ω

Straight-line 
approximation ____

Actual _ _ _ _

rad

secω
Warning

The Bode plots that we've covered here are the simplest types and only magnitude plots.  This will do for an initial 
introduction to simple filters, but this coverage is not complete.  
Complete Bode plots also include phase plots which we haven't looked at at all.  Also, if some poles and zeroes are 
too close to each other they can interact and even result in complex poles.  
If asked in a future classes if you have "covered" Bode plots, do not make the mistake of saying "yes".
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 1.6 Second-Order Transients  ECE 2210 b
A circuit with both a capacitor and an inductor is like a mechanical system with both a mass and  a spring.  When there are two different types of energy-storage elements, the transient responses  can be much more interesting than the simple exponential curves that we've seen so far.  Many of  these systems can oscillate or "ring" when a transient is applied.  When you analyze a circuit  with a capacitor and an inductor you get a second-order differential equation, so the transient  voltages and currents are called second-order transients.

v R t = 0 R Series RLC circuit, traditional way:   Look at the circuit at right.  The same current  flows through all three elements ( i(t) or just i ).  That current will begin to flow after time  t = 0 , when the switch is closed.  Using basic circuit laws:
V in

L v L
V in= v R v L v C

C
= .i R .L d

dt
i .1

C
d

∞

t
ti C  Making the obvious substitutions.

v Ci( )t

The next step here would be to differentiate both sides of the equation, but we've been  through this before with the RC circuit.  If you're a little more clever, there's an easier way. 

Make this substitution instead i = i C = .C d

dt
v C , to get V in= ..R C d

dt
v C

..L C d

d

2

2t
v C v C

Rearrange this equation to get V in= ..L C d

d

2

2t
v C

..R C d

dt
v C v C and

V in
.L C

= d

d

2

2t
v C

.
.R C
.L C

d

dt
v C

.1
.L C

v C This is the classical second-order differential equation and it is solved just like the first-order differential equation,  by guessing a solution of the right form and then finding the particulars of that solution. Standard differential equation answer: v C( )t = A .B e
.s t  Note: It will turn out that there will be two 

s 's (s1 and s2 ), and two B 's (B and D ) for  the second-order solution.  For now I'll  leave out that added complexity.
 Differentiate: d

dt
v C = ..B s e

.s t And again: d

d

2

2t
v C = ..B s2 e

.s t Substitute these back into the original equation:
V in

.L C
= d

d

2

2t
v C

.R

L

d

dt
v C

.1
.L C

v C

= ..B s2 e
.s t ...R

L
B s e

.s t .1
.L C

A .B e
.s t

= ..B s2 e
.s t ...R

L
B s e

.s t ..1
.L C

B e
.s t .1

.L C
A We can separate this equation into two parts, one which is time dependent and one which is not.  Each part must  still be an equation. Time independent (forced) part: V in= A , A = V in= final condition = v C( )∞ just like before Time dependent (transient) part: 0 = ..B s2 e

.s t ...R

L
B s e

.s t ..1
.L C

B e
.s t

Divide both sides by .B e
.s t  to get: 0 = s2 .R

L
s

1
.L C

 =  characteristic equation This equation is important.  It is called the characteristic equation and we'll need to find one like it for every  second-order circuit that we analyze.  Luckily, there's a much easier way to get it, using impedances similar to  those we used in phasor analysis.  I'll talk about that in the next section, in the meantime, let's continue with this  problem.   Transients  p. 1.9



Once you have the characteristic equation
|
|
|
|
|
|
|
|
|
|
|
| 

The characteristic equation is solved  using the quadratic equation, recall : characteristic equation: s2 .R

L
s

1
.L C

= 0
if .a x2 .b x c  = 0 Solutions to the characteristic equation:

there are two solutions

s 1 =
R
.2 L

.1

2

R

L

2 4
.L C

s 2 =
R
.2 L

.1

2

R

L

2 4
.L C

x 1=
b b2 ..4 a c

.2 a

and
This results in three possible types of solutions, depending on  what's under the radical, +, -, or 0. 

x 2=
b b2 ..4 a c

.2 a
_________________________________ Notice also that there are two s values (s1 and s2 ) and that leads to two two B 's (we'll  call  them B and D) 

Overdamped  The part under the radical is +

if
R

L

2 4
.L C

 > 0 then s1 and s2 are both real and s 1 s 2 and our guessed solution v C( )t = A .B e
.s t

will become v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t  and is simply the combination of two exponentials.

Also both s1 and s2  wil l always be negative (unless you find a negative R, C , or L), meaning the exponential  parts will decay with time and are thus transient.   This is the overdamped case, like a class of students on a Monday morning.  Pretty dull and soon to be asleep.

Underdamped  The part under the radical is -

if
R

L

2 4
.L C

 < 0 then s1 and s2 are both complex and and can be expressed as

s 1 = α .j ω and s 2 = α .j ω

Well, if you start putting complex numbers in exponentials, what do you get?  Euler's equations show that  you'll get sines and cosines.  In this case its much easier to rephrase the guessed solution like this.

v C( )t = v C( )∞ .e
.α t .B 2 cos( ).ω t .D 2 sin( ).ω t

This form can be derived directly from v C( )t = A .B e
.s 1 t .D e

.s 2 t

using Euler's equation, e
.j θ = cos( )θ .j sin( )θ  ,  but we won't bother to here. 

In fact, although B2 and D2 are not the same as B and D , I'll drop the " 2" 
subscripts because we'll never actually need to convert between these two  forms and the extra subscripts just become annoying. So: v C( )t = v C( )∞ .e

.α t ( ).B cos( ).ω t .D sin( ).ω t

α and ω come from the s1 and s2  solutions to the characteristic equation.  ω is frequency at which the  underdamped circuit will "ring" or "oscillate" in response to a transient.  α  sets the decay rate of that oscillation.  

Because α will always be negative the eat  term insures that the transient ringing dies out in time. This is the underdamped case, like students on spring break in Fort Lauderdale.

Natural Frequency and the Damping Ratio

These are commonly used terms to describe the underdamped response in a normalized way, similar to 
the τ  used to decribe first-order transient responses. The "natural frequency" is defined as: ω n = α2 ω2 It is the frequency that the system would oscillate at if there were no damping ( R = 0   in our case) for this case: ω n =

1

.L C The damping ratio is defined as: ζ =
α

ω n
(ζ  is zeta) Transients  p. 1.10



Critically damped The part under the radical is 0 

if
R

L

2 4
.L C

 = 0 then s1 and s2  are both real and exactly the same.   Now our guessed solution must be 

modified to v C( )t = v C( )∞ .B e
.s 1 t ..D t e

.s 2 t  and can result in a single overshoot. This is actually a trivial case since it relies on an exact equality which will never happen in reality.  The best use  of the critically damped case is as a conceptual border between the over- and under-damped cases. 

RLC examples Let's use some component values in the RLC circuit and see what happens.

Overdamped Example  t = 0 R .90 Ω

R

L

2 4
.L C

 > 0 s1 and s2  are real and negative, overdamped.

V in
.12 V

L .20 mH
s 1

R
.2 L

.1

2

R

L

2 4
.L C

=s 1 2000 sec 1

C .10 µF
s 2

R
.2 L

.1

2

R

L

2 4
.L C

=s 2 2500 sec 1

i( )t

v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t (As an example, the form is the same for all  variables in this circuit)

Final conditions
REDRAW the circuit with the 
inductor as a short and the  capacitor as an open.

=V in 12 V iL(∞ ) = 0

v C( )∞  = final condition = .12 V

The capacitor will eventually charge up to Vin.

Initial conditions
REDRAW the circuit before the switch  changes.  Find two initial  conditions,
                iL (0-) and vC (0-).

vR (0-) =  i (0-)R = 0 

iL (0-) = 0 = iL (0+) 

iL and vC cannot change instantly, so  cannot change the instant the switch changes.

vC (0-) = 0 = vC (0+)

Pretty easy in this case  (assuming no initial charge)  Transients  p. 1.11



 REDRAW the circuit again just after the switch changes.  Show the inductor as a current source of iL (0)  (same 
as iL (0-) ) and the capacitor as a voltage source of vC (0)  (same as vC (0-) ).  Find two more initial conditions,  vL (0) 
and iC (0).  Both vL (0) or iC (0) can change instantly, so you must find them from iL (0) and vC (0).

+

vR (0) = iL (0)R = 0V

 -
+

=V in 12 V
iL (0) = 0 vL (0) = 12V

V in iL (0) = 0
 -

In this particular case, the circuit  can be redrawn again for clarity:
vC (0) = 0

vC (0) = 0
iC (0)  = iL (0) = 0

Again, pretty easy in this case

Rearrange the basic equations for inductors and capacitors to find the initial slopes from vL (0) or iC (0).

Rearrange v L = .L d

dt
i L to d

dt
i L( )0 =

v L( )0

L
= =

.12 V

L
600

A

sec
In this case

or, i C = .C d

dt
v C to d

dt
v C( )0 =

i C( )0

C
= =

.0 A

C
0

V

sec Note: You wil l need only the first one if you are looking for iL (t). 
You will need only the second one if you are looking for vC (t).  You may need both if you are looking for any other variable in the circuit.

  Other variables can usually be found most easily from iL (t)  and/or vC (t).  
To Find vC (t) 

At time  t = 0 v C( )0 = v C( )∞ B D = 0

0 = .12 V B D  Rearranging: D = .12 V B This equation has two unknowns.  The initial slope will give us the needed second equation.  Differentiate the solution: v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t to get: d

dt
v C( )t = 0 ..B s 1 e

.s 1 t ..D s 2 e
.s 2 t

At time  t = 0: d

dt
v C( )0 = .B s 1

.D s 2 From initial conditions, above: d

dt
v C( )0 =

i C( )0

C
= .0

V

sec Combining: .0
V

sec
= .B s 1

.D s 2  The second equation!

Solve simultaneously for B and D: .0
V

sec
= .B s 1

.( ).12 V B s 2 B = =.s 2
.12 V

s 1 s 2
60 V Transients  p. 1.12 D = .12 V B = =.12 V .60 V 48 V



 recall the solution: v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t Substitute everything back in back in: v C( )t .12 V ..60 V e
.2000

sec
t

..48 V e
.2500

sec
t

0 1 2 3 4

2

4

6

8

10

12

14Notice that this is not a simple 
exponential curve, although 
admittedly it's not much more  interesting.

v C( )∞

= .12 V

v c( )t  time (ms)

To Find iL (t) or iR (t) or iC (t) which all the same i (t). 
i( )t = i( )∞ .B e

.s 1 t .D e
.s 2 t

From final and initial conditions

i( )0 = i( )∞ B D = 0 = 0 B D D = B

d

dt
i( )0 = .B s 1

.D s 2 = =
.12 V

L
600

A

sec

Solve simultaneously for B and D
.12 V

L
= .B s 1

.B s 2 B = =

.12 V

L

s 1 s 2
1.2 A

D = B = .1.2 A Substitute back in: i( )t .1.2 e
.2000

sec
t

.1.2 e
.2500

sec
t

A

0 1 2 3 4

0.05

0.1However you get to it, at least 
this curve is slightly more 
interesting than the vC (t). i( )t (A)  time (ms)

We could have found the same result from vC (t), using that to find iL (t): 
i C( )t = .C d

dt
v C( )t = .C d

dt
.12 V ..60 V e

.2000

sec
t

..48 V e
.2500

sec
t

= ...C ( ).60 V
2000

sec
e

.2000

sec
t

....C 48 V
25

sec
e

.2500

sec
t

=..C ( ).60 V
2000

sec
1.2 A =...C 48 V

2500

sec
1.2 A and i ( )t .1.2 e

.2000

sec
t

.1.2 e
.2500

sec
t

same  Transients  p. 1.13



Underdamped Example

R .10 Ω L .20 mH C .10 µF  t = 0 =R 10 Ω

s 1
R
.2 L

.1

2

R

L

2 4
.L C

=s 1 250 +2.222 103 j sec 1

V in
.12 V

s 2
R
.2 L

.1

2

R

L

2 4
.L C

=s 2 250 2.222 103 j sec 1 =L 20 mH

α .250
1

sec
ω Im s 1 =ω 2222

rad

sec =C 10 µF

i( )t
The final and initial conditions are the same as before, since they did 
not depend on R and R  is the only component that is different. Let's find the current again this time.

0
i( )t = i( )∞ .e

.α t ( ).B cos( ).ω t .D sin( ).ω t  (underdamped this time)

i( )0 = i( )∞ B,

0 = 0 B B .0 A Differentiate the solution: i( )t = i( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t to get: d

dt
i( )t = ..α e

.α t ( ).B cos( ).ω t .D sin( ).ω t .e
.α t ( )..B sin( ).ω t ω ..D cos( ).ω t ω

At time  t = 0: d

dt
i( )0 = .B α .D ω Solve for D: D =

d

dt
i( )0 .B α

ω

d

dt
i( )0 =

.12 V

L D = =

.12 V

L
.B α

ω
0.27 A Substitute back in: i( )t .e

.α t ( ).0.27 sin( ).ω t A

0 2 4 6 8 10 12 14 16 18 20

0.2

0.1

0.1

0.2

0.3
i( )t (A)

.0.27 e
.α t  time (ms) Now this is much more interesting. Transients  p. 1.14



Critically Damped Example

First we have to figure out how to get this case

Change R 's value to create critical damping:
R

L

2 4
.L C

 = 0 R .2
L

C
=R 89.44271909999159 Ω (exactly)

s 1
R
.2 L

.1

2

R

L

2 4
.L C

=s 1 2236 sec 1 s 2
R
.2 L

.1

2

R

L

2 4
.L C

=s 2 2236 sec 1

i( )t = i( )∞ .B e
.s 1 t ..D t e

.s 2 t
i( )∞  = final condition = .0 A  Capacitor will charge up and current will stop.

i( )0 = i( )∞ B= 0 , B = 0

d

dt
i( )0 = ..B s 1 e

.s 1 t .D e
.s 2 t ...D t s 2 e

.s 2 t
= .B s 1 D =

.12 V

L
 Since all initial voltage will be across inductor. Solve for D: D = =

.12 V

L
600

A

sec
 Substitute back in: i( )t ...600

A

sec
t e

.2236

sec
t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

i( )t (A)

 time (ms) if you notice a remarkable similarity with the overdamped case, that's common for critical damping.

 Transients  p. 1.15



 1.7  The Easy Way to get the Characteristic Equation

Recall from your Ordinary Differential Equations class, the Laplace transform method of solving differential  equations.  The Laplace transform allowed you to change time-domain functions to frequency-domain functions.   We've already done this for steady-state AC circuits.  We changed functions of t into functions of jω .  That was the  frequency domain.  Laplace let's us do the same sort of thing for transients.  The general procedure is as follows. 1) Transform your forcing functions into the frequency domain with the Laplace transform. 2) Solve your differential equations with plain old algebra, where:

d

dt
operation can be replaced with s,          and dt can be replaced by

1

s 3) Transform your result back to the time domain with the inverse Laplace transform. Step 1 isn't too bad, but step 3 can be a total pain without a good computer program to do the job.  However, step  2 sounds great.  It turns out that we can use step 2 alone and still learn a great deal about our circuits and other  systems without ever bothering with steps 1 and 3.

First remember from your study of Laplace that differentiation in the time domain was the same as multiplication  by s in the frequency domain.  That's really all we need and we're off and running.

v L( )t = .L d

dt
i L( )t  ---> V L( )s = ..L s I L( )s and i C( )t = .C d

dt
v C( )t  ---> I C( )s = ..C s V C( )s Leading to the Laplace impedances: Ls for an inductor and

1

Cs
 for a capacitor.

That's it, now we can use these impedances just like the jω impedances, and we can use all the tools developed  for DC.  And with Laplace we don't even have to mess with complex numbers. Look what happens to the RLC circuit now. Pick any dependent variable ( I(s), VR (s), VL (s), or VC (s) ) and write a transfer function,  which is a ratio of the dependent variable to the input (Vin (s) ), like this:

V in( )s = .I( )s
1
.C s

R .L s Transfer function =  H(s) =
I( )s

V in( )s
=

1

1
.C s

R .L s Manipulate this transfer function into this form:
.a 1 s2 .b 1 s k 1

s2 .b s k One polynomial divided by another.

I( )s

V in( )s
=

.1 ( ).C s

( )1 R ..L s ( ).C s
=

.1

L
s

s2 .R

L
s

1
.L C

 in the correct form. Set the denominator to 0 and you get the characteristic equation: s2 .R

L
s

1
.L C

= 0

At this point you just proceed with the solution like you did before; Solve the characteristic equation to find s1 and s2.   Decide which case you have (over-, under-, or critically damped).  Use the two initial conditions, iL (0) and vC (0) to find 
the initial condition and the initial slope of your variable of interest, then use those to find the constants B and D.

Differential equation from the transfer function
You can also use the transfer function to go back and find the differential equation, just replace each s with a 

d

dt
 and go back to functions of t. .1

L

d

dt
V in( )t = d

d

2

2t
i( )t .R

L

d

dt
i( )t .1

.L C
i( )t Actually this is a pretty  useless thing to do. Transients  p. 1.16



ECE 2210                Second-Order Transient Examples A.Stolp
10/29/02
rev 2/27/07Ex. 1 a) Find the transfer function of the circuit shown. Write your 

equation in the form of one simple polynomial divided by another

H( )s =
V o( )s

V in( )s
= .

.L s

1

1

R
.C s

.L s

1

R
.C s

1

R
.C s

=

.L s

R
..L C s2

1 ..L s
1

R
.C s

=

.L s

R
..L C s2

1
.L s

R
..L C s2

= .

.L s

R
..L C s2

..L C s2 .L s

R
1

1
.L C

1
.L C

=

s2 .1
.C R

s

s2 .1
.C R

s
1
.L C

b) Find the characteristic equation 0 = s2 .1
.C R

s
1
.L C

Ex. 2 a) Find the characteristic equation of the circuit shown 
(after the switch moves to the lower position at t = 0).  R 1

.25 Ω
R 2

.125 Ω
V 1

.18 V V 2
.6 V

V C( )s

V in( )s
= H( )s = .

1

1
.L s

.C s

1

1
.L s

.C s

R 2

1
.L s

.C s

1
.L s

.C s
= .1

1
R 2

.L s
..R 2 C s

.L s

.L s

C .0.08 µF L .5 mH

= .
.L s

.L s R 2
...R 2 C L s2

1
..R 2 C L

1
..R 2 C L

=

.1
.R 2 C

s

.1
.R 2 C

s
1
.L C

s2
Characteristic equation:

0 = s2 .1
.R 2 C

s
1
.L C

b) Find the solutions of the characteristic equation. =
1

.R 2 C
1 105 sec 1 =

4
.L C

1 1010 sec 2

s 1

1
.R 2 C

1
.R 2 C

2 4
.L C

2
=s 1 5 104 1

sec
s 2

1
.R 2 C

1
.R 2 C

2 4
.L C

2
=s 2 5 104 1

sec

s1 = s2  so...  critically damped
c) Find initial and final conditions for vC(t)

before switch is moved:
just after switch closes:

=
.6 V

.125 Ω
48 mA

.25 Ω .125 Ω

.18 V .6 V .72 mA
v C( )0 = .0 V i L( )0 = .0 V .120 mA

=
.18 V

.25 Ω .125 Ω
120 mA

d
dt

v C( )0 = =
.72 mA

C
9 105 V

sec
Second-Order Transient Examples,  p.1



Second-Order Transient Examples,  p.2

Final conditions:

.6 V

v C( )∞ = .0 V i L( )∞ = =
.6 V

.125 Ω
48 mA

d) Find the full expression of vC(t).

Critically damped v C( )t = v C( )∞ .B e
.s 1 t ..D t e

.s 2 t

v C( )0 = v C( )∞ B

0 = 0 B B =  0 d
dt

v C( )0 = .B s D

..9 105 V

sec
== .0 ..5 104 1

sec
D D ..9 105 V

sec
v C( )t ....9 105 V

sec
t e

.s 1 t

0 50 100 150 200
10

5

0

v C( )t

(volts)

time (µs)

Ex. 2 with bigger R2 
a) Find the characteristic equation of the circuit shown (after the 
switch moves to the lower position at t = 0).  

R 1
.25 Ω

R 2
.1 kΩas before: V 1

.18 V V 2
.6 V

V C( )s

V in( )s
= H( )s =

.1
.R 2 C

s

.1
.R 2 C

s
1
.L C

s2 Characteristic equation:

0 = s2 .1
.R 2 C

s
1
.L C

C .0.08 µF L .5 mH

b) Find the solutions of the characteristic equation. =
1

.R 2 C
1.25 104 sec 1 =

4
.L C

1 1010 sec 2

s 1

1
.R 2 C

1
.R 2 C

2 4
.L C

2
=s 1 6.25 103 +4.961 104 j

1

sec s1 & s2  complex, 
so underdampeds 2 = =s 1 6.25 103 4.961 104 j

1

sec

α Re s 1 =α 6.25 103 sec 1 ω Im s 1 =ω 4.961 104 sec 1

Second-Order Transient Examples,  p.2



c) Find initial and final conditions for vC(t) Second-Order Transient Examples,  p.3
See drawings above

v C( )0 = .0 V

i L( )0 = =
.18 V

.25 Ω .1 kΩ
17.561 mA

i C( )0 = =
.6 V
.1 kΩ

.17.561 mA 11.561 mA d
dt

v C( )0 = =
.11.561 mA

C
1.445 105 V

sec

v C( )∞ = .0 V

d) Find the full expression of vC(t). Underdamped v C( )t = v C( )∞ .e
.α t

( ).B cos( ).ω t .D sin( ).ω t

B = v C( )0 v C( )∞ = =.0 V .0 V 0 V

D =

d
dt

v C( )0 .B α

ω
= =

..1.445 105 V

sec
..0 V α

ω
2.913 V v C( )t ...2.913 V e

.6250
sec

t

sin .49610

sec
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.74

2

0

2

v C( )t

(volts)

time (ms)

Ex. 3 a) Find the characteristic equation of the circuit shown. (after the switch 
opens at t = 0).  Write your equation in the form of a simple polynomials. R 1

.200 Ω

V in
.12 VH( )s =

I T( )s

V in( )s
=

1

Z( )s
= .1

1

1

R 2

.C s

.L s R 1

1

R 2

.C s

1

R 2

.C s
L .8 mH

=

1

R 2

.C s

1 ..L s
1

R 2

.C s .R 1
1

R 2

.C s
=

1

R 2

.C s

1
.L s

R 2

..L C s2
R 1

R 2

..R 1 C s

R 2
.1 kΩ C .0.1 µF

= .

1

R 2

.C s

..L C s2 .L s

R 2

..R 1 C s 1
R 1

R 2

1
.L C

1
.L C

=

1
..L C R 2

.C
.L C

s

s2 .L
..L C R 2

.R 1 C

.L C
s .1

R 1

R 2

1
.L C

= .1

L

s
1
.C R 2

s2 .1
.C R 2

R 1

L
s .1

R 1

R 2

1
.L C

Characteristic eq.: 0 = s2 .1
.C R 2

R 1

L
s .1

R 1

R 2

1
.L C

Second-Order Transient Examples,  p.3



Second-Order Transient Examples,  p.4
b) Find the solutions (numbers) of the characteristic equation:

b
1
.C R 2

R 1

L
=b 3.5 104 sec 1 k .1

R 1

R 2

1
.L C

=k 1.5 109 sec 2

s 1
b b2 .4 k

2
=s 1 1.75 104 +3.455 104 j

1

sec
α b

2
=α 1.75 104 sec 1

s 2
b b2 .4 k

2
=s 2 1.75 104 3.455 104 j

1

sec
ω .1

2
.4 k b2 =ω 3.455 104 sec 1

Underdamped 

pole

c) Plot the poles and zeroes of the transfer function.

The poles are the s's where the denominator is zero, that is, 
the s1 & s2 solutions to the characteristic equation.

zero

The zero is the s where the numerator is zero: 0 =
1
..L C R 2

.C
.L C

s

s = =
1
.C R 2

1 104 sec 1

poled) Initial and final conditions for iL(t) and vC(t).

before the switch opens just after the switch opens

=R 1 200 Ω =..60 mA R 1 12 V

=V in 12 V
i L( )0 = =

V in

R 1
60 mA

.60 mA V L( )0 = =.12 V .12 V .0 V 0 V
.12 V

.60 mA
v C( )0 =0 .0 mA

.0 V

Final condition:

R 1
d
dt

i L( )0 =
V L( )0

L
= =

.0 V

L
0

A

sec

i L( )∞ = =
V in

R 1 R 2
10 mA d

dt
v C( )0 =

i( )0

C
= =

.60 mA

C
6 105 V

sec.12 V

R 2 v C( )∞ v C( )∞ = .
R 2

R 1 R 2
V in = =..

.1 kΩ
.200 Ω .1 kΩ

12 V 10 V

Second-Order Transient Examples,  p.4



Ω

Ω Ω

Second-Order Transient Examples,  p.5e) Find the full expression of iL(t).

Underdamped X( )t = X( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t

i L( )t = i L( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t

i L( )0 = i L( )∞ B so.. B = i L( )0 i L( )∞ B .60 mA .10 mA =B 50 mA

d
dt

i L( )0 = .B α .D ω so.. D =

d
dt

i L( )0 .B α

ω
D

.0
A

sec
.B α

ω
=D 25.325 mA

i L( )t .10 mA .e
.17500

sec
t

..50 mA cos .34550

sec
t ..25.325 mA sin .34550

sec
t

0 50 100 150 200 250 300 350
20

10

0

10

20

30

40

50

60i L( )0

i L( )t

(mA)

i L( )∞ = .10 mA

time (µs)

f) Find the full expression of vC(t).

B .0 V .10 V =B 10 V D

..6 105 V

sec
.B α

ω
=D 12.301 V

v C( )t = v C( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t

v C( )t .10 V .e
.17500

sec
t

..10 V cos .34550

sec
t ..12.301 V sin .34550

sec
t

0 50 100 150 200 250 300 350
0

5

10

15

20

v C( )t

(volts)
v C( )∞ = .10 V

time (µs)

Second-Order Transient Examples,  p.5



Second-Order Transient Examples,  p.6
h) What value of R1 would make this system critically damped?

1
.C R 2

R 1

L

2

= ..4 1
R 1

R 2

1
.L C

1

.C2 R 2
2

.2
.C R 2

R 1

L

R 1
2

L2
=

4
.L C

.4
.C R 2

R 1

L

.1

L2
R 1

2 .2
..L C R 2

R 1
1

.C2 R 2
2

4
.L C

0 = R 1
2 .

.2 L
.C R 2

R 1
L2

.C2 R 2
2

.4 L

C0 =

Solve for R1 with quadradic equation:
Quadradic equation can be reduced to:

= =
L
.C R 2

.4

2

L

C
485.7 Ω this solution can't be

R 1 =

.2 L
.C R 2

.2 L
.C R 2

2
.4

L2

.C2 R 2
2

.4 L

C

2

= =
L
.C R 2

.4

2

L

C
645.7 Ω this must be the solution

Ex. 2 with bigger R1 R 1
.1 kΩ This should make the system overdamped

b
1
.C R 2

R 1

L
=b 1.35 105 sec 1 k .1

R 1

R 2

1
.L C

=k 2.5 109 sec 2

s 1
b b2 .4 k

2
=s 1 2.215 104 1

sec
s 2

b b2 .4 k

2
=s 2 1.128 105 1

sec

Overdamped 

v C( )0 =0 i L( )0 = =
V in

R 1
12 mA = i C( )0 d

dt
v C( )0 =

i( )0

C
= =

.12 mA

C
1.2 105 V

sec

v C( )∞ = =.
R 2

R 1 R 2
V in 6 V i L( )∞ = =

V in

R 1 R 2
6 mA

..1.2 105 1

sec
=

v C( )0 = v C( )∞ B D

.0 V = .6 V B D B = ( ).6 V D

d
dt

v C( )0 = .B s 1
.D s 2 = ..6 V s 1

.D s 1
.D s 2 D

..1.2 105 V

sec
..6 V s 1

s 2 s 1
=D 0.143 V

B = =( ).6 V D 6.143 V

v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t

v C( )t .6 V ..6.143 V e
..2.215 104

sec
t

..0.143 V e
..1.128 105

sec
t

0 50 100 150 200 250 300 350
0

2

4

6 v C( )∞ = .6 V

v C( )t

(volts)

time (µs) Second-Order Transient 
Examples,  p.6



Notes,   Second Order Transients ECE 2210 A.Stolp  
4/6/00, 
2/25/16Laplace impedances

Resistor Capacitor Inductor
C

R L

Z R= R Z C=
1
.C s

Z L = .L s

Transfer function
Use Laplace impedances, manipulate your circuit equation(s) to find a transfer function: 

May be IX or any desired variable
/ a1, b1, k1 coefficients may be zero

Rearrange circuit equation to: H( )s =
output

input
=

V X( )s

V in( )s
=

.a 1 s2 .b 1 s k 1

s2 .b s k
=  transfer function

\
May be Iin or any forcing function

Characteristic equation s2 .b s k = 0

To find the poles of the transfer function characteristic equation

Complete solution
Solutions to the characteristic equation: s 1 =

b

2

b2 .4 k

2
s 2 =

b

2

b2 .4 k

2

Find initial Conditions (vC and/or iL)
Find conditions of  just before time t = 0,  vC(0-) and iL(0-).  These will be the same just after time t = 0,  vC(0+) and iL(0+) 
and will be your initial conditions.
Use normal circuit analysis to find your desired variable: v X( )0 or i X( )0

Also find: d

dt
v X( )0 or d

dt
i X( )0 The trick to finding these is to see that: d

dt
v C( )0 =

i C( )0

C
and d

dt
i L( )0 =

v L( )0

L

Find final conditions ("steady-state" or "forced" solution)
DC inputs: Inductors are shorts Capacitors are opens Solve by DC analysis v X( )∞ or i X( )∞
AC inputs: Solve by AC steady-state analysis using jω

X(t) may be replaced by vX(t), iX(t) or any desired variable in the equations below

Overdamped b2 .4 k > 0 s1 and s2 are real and negative typical

X( )t = X( )∞ .B e
.s 1 t .D e

.s 2 t
time

X( )0 = X( )∞ B D d

dt
X( )0 = .B s 1

.D s 2 Solve simultaneously for B and D

Critically damped b2 .4 k = 0 s 1 = s 2 =
b

2
= s s1 and s2 are 

real, equal and 
negative

typical
time

X( )t = X( )∞ .B e
.s t ..D t e

.s t

X( )0 = X( )∞ B
d

dt
X( )0 = .B s D so.. D = d

dt
X( )0 .B s

so.. B = X( )0 X( )∞

Underdamped b2 .4 k < 0 s 1 = α .j ω s 2 = α .j ω α is negative

complex s1 and s2 typical

X( )t = X( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t α is negative

e
.α t

time
X( )0 = X( )∞ B d

dt
X( )0 = .B α .D ω so.. D =

d

dt
X( )0 .B α

ωso.. B = X( )0 X( )∞
ω
.2 πf =ECE 2210  Notes,  Second Order Transients





ECE 2210    Lecture 18 notes   Second order Transient examples A. Stolp
10/30/06
2/19/10Ex. 1 For the circuit shown:

a) Find the transfer function vL.

V L( )s = .

1

1
.L s

1

R

1

1
.L s

1

R

1
.C s

V S( )s

= .1

1 .1
.C s

1
.L s

1

R

V S( )s = .1

1 .1
.C s

1
.L s

.1
.C s

1

R

V S( )s = .s2

s2 .1
.C R

s
1
.L C

V S( )s

H( )s =
V L( )s

V S( )s
=

s2

s2 .1
.C R

s
1
.L C

R .120 Ω C .0.22 µF L .0.5 mH

=
1
.C R

3.788 104 1

sec
=

1
.L C

9.091 109 1

sec2=
s2

s2 .
.3.788 104

sec
s

.9.091 109

sec2

b) Find the characteristic equation for this circuit. 0 = s2 .1
.C R

s
1
.L C

= s2 .
.3.788 104

sec
s

.9.091 109

sec2

Just the denominator set to zero.  The solutions of the 
characteristic equation are the "poles" of the transfer function.

c) Find the differential equation for vL.

Cross-multiply the transfer function

.s2 V S( )s = .s2 .1
.C R

s
1
.L C

V L( )s

.s2 V S( )s = .s2 V L( )s ..1
.C R

s V L( )s .1
.L C

V L( )s

d

d

2

2t
v S( )t = d

d

2

2t
v L( )t .1

.C R
d
dt

v L( )t .1
.L C

v L( )t

d

d

2

2t
v L( )t .

.3.788 104

sec
d
dt

v L( )t .
.9.091 109

sec2
v L( )td

d

2

2t
v S( )t =

d) What are the solutions to the characteristic equation?

s 1 = =
.3.788 104

2
.1

2
.3.788 104 2 .4 .9.091 109 1.894 104 +9.345 104 j

s 2 = =
.3.788 104

2
.1

2
.3.788 104 2 .4 .9.091 109 1.894 104 9.345 104 j

e) What type of response do you expect from this circuit? The solutions to the characteristic equation are 
complex so the response will be underdamped.
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V in

.15 VEx. 2 Analysis of the circuit shown yields the characteristic equation below. R 1
.200 Ω

The switch has been in the open position for a long time and is closed (as 
shown) at time t = 0.  Find the initial and final conditions and write the full 
expression for iL(t), including all the constants that you find.

R 2
.300 Ω

s2 .1
.C R 1

s
1
.L C

0

L .100 mH C .0.5 µF
=

1
.C R 1

1 104 1

sec
=

1
.L C

2 107 1

sec2

s2 ..10000
1

sec
s ..2 107 1

sec2
0

s 1
.10000

2
.1

2
( )10000 2 .4 .2 107 sec 1 s 2

.10000

2
.1

2
( )10000 2 .4 .2 107 sec 1

=s 1 2764 sec 1 =s 2 7236 sec 1 s1 and s2 are both real and 
distinct, overdamped 

Find the initial conditions:

Before the switch closed, the inductor current was: =
.15 V

R 1 R 2
30 mA = i L( )0

Before the switch closed, 
the capacitor voltage was: =.

R 2

R 1 R 2
( ).15 V 9 V = v C( )0 i L( )0 v C( )0 = 9V

30mA
When the switch is closed, the 
inductor is suddenly in parallel 
with the capacitor, and: Find the final 

condition:v L( )0 = v C( )0

+ v C( )0d
dt

i L( )0 = .1

L
v L( )0 = i L( )∞ =i L( )0 v L( )0

v C( )∞ = 0V- i L( )∞=
.15 V

R 1
75 mA

=..1

L
9 V 90

A

sec

General solution for the overdamped condition: i L( )t = i L( )∞ .B e
.s 1 t .D e

.s 2 t

Initial conditions: i L( )0 =
.15 V

R 1 R 2
= i L( )∞ B D ,  so B = i L( )0 i L( )∞ D = .30 mA .75 mA D

= .45 mA D
d
dt

i L( )0 = .90
A

sec
= .s 1 B .s 2 D = .s 1 ( ).45 mA D .s 2 D = .s 1 ( ).45 mA .s 1 D .s 2 D

solve for D & B: D

.90
A

sec
.s 1 ( ).45 mA

s 1 s 2
=D 7.69 mA B .45 mA D =B 52.7 mA

Plug numbers back in: i L( )t .75 mA ..52.7 mA e
.2764 t ..7.69 mA e

.7236 t

0 0.25 0.5 0.75 1 1.25 1.5
0

15

30

45

60

75

90i L( )t

( )mA Ends at 75mA

Initial slope: =
i L( )0.00001 i L( )0

.0.00001 sec
89.989

A

secStarts at 30mA

time (ms)

ECE 2210    Lecture 18 notes  p2
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Analysis of the circuit shown yields the characteristic equation and s 
values below.  The switch has been in the closed position for a long 
time and is opened (as shown) at time t = 0.  Find the initial and final 
conditions and write the full expression for vC(t), including all the 
constants.

R 1
.40 Ω

L .80 mH
0 = s2 .

R 1

L
s

1
.L C

V in
.10 V

s 1
.250 .104 j

1

sec
, s 2

.250 .104 j
1

sec
R 2

.60 Ω
C .0.125 µF

Solution: α .250
1

sec
ω .10000

rad

sec

Initial conditions:

just after the switch opensbefore switch opens

i L( )0 = =
V in

R 1 R 2
100 mA

.100 mA

i C( )0
v C( )0 = =.V in

R 2

R 1 R 2
6 V

.0 V

d
dt

v C( )0 =
i C( )0

C
= =

.100 mA

C
8 105 V

secFind final condition: .0 mA

.10 V

v C( )∞ = =V in 10 V

Find constants: v C( )0 = v C( )∞ B B = v C( )0 v C( )∞ B .6 V .10 V =B 4 V

d
dt

v C( )0 = .α B .D ω D

..8 105 V

sec
.α B

ω
=D 79.9 V

Write the full expression for vC(t), 
including all the constants that you find.

v C( )t = .e
.α t

( ).B cos( ).ω t .D sin( ).ω t v C( )∞

v C( )t .e
.250 t ..4 V cos .104 t ..79.9 V sin .104 t .10 V

0 3 6 9 12 1560

45

30

15

0

15

30

45
60

75

90

10 .80 e
.250 t

v C( )t

=D2 B2 80 V (volts)

10 .80 e
.250 t

ECE 2210    
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R 1

.40 ΩEx. 4 Ex.3 Backwards, switch closes at t = 0

Characteristic eq.: 0 = s2 .1
.C R 2

R 1

L
s .1

R 1

R 2

1
.L C L .80 mH

V in
.10 V

s 1
..1.257 103 1

sec
s 2

..1.326 105 1

sec R 2
.60 Ω

C .0.125 µF
Initial conditions, same as Ex.3 final:

t = 0

.0 mA just after the switch opens

.10 V .0 V

v C( )0 = =V in 10 V

.0 mA .0 V

Find final condition: .10 V

before switch opens .166.7 mA .10 V
=

.10 V

R 2
166.7 mA.10 V

i L( )∞ = =
V in

R 1 R 2
100 mA

d
dt

v C( )0 =
i C( )0

C
= =

.166.7 mA

C
1.334 106 V

secv C( )∞ = =.V in
R 2

R 1 R 2
6 V

Find constants: v C( )0 = v C( )∞ B D ,  so B = v C( )0 v C( )∞ D = .10 V .6 V D = .4 V D

d
dt

v C( )0 = ..1.334 106 V

sec
= .s 1 B .s 2 D = .s 1 ( ).4 V D .s 2 D = .s 1 ( ).4 V .s 1 D .s 2 D

D

..1.334 106 V

sec
.s 1 ( ).4 V

s 1 s 2
=D 10.12 V B .4 V D =B 6.12 V

v C( )t .6 V ..6.12 V e
.1257 t ..10.12 V e

.132600 t

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

v C( )t

(volts)

time (ms)
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Ex. 5 Analysis of a circuit (not pictured) yields the characteristic equation below.  

0 = s2 .400 s 400000 R .80 Ω L .20 mH C .2 µF

Further analysis yields the followiing initial and final conditions:

i L( )0 = .120 mA v L( )0 = .3 V v C( )0 = .7 V i C( )0 = .80 mA

i L( )∞ = .800 mA v L( )∞ = .0 V v C( )∞ = .12 V i C( )∞ = .0 mA

Write the full expression for iL(t), including all the constants that you find. i L( )t = ?

Solution:

=
400

2
200 =

4002 .4 400000

2
600j

s 1
.( )200 .600 j

1

sec
and s 2

.( )200 .600 j
1

sec

α Re s 1 =α 200 sec 1 ω Im s 1 =ω 600 sec 1

Initial slope: d
dt

i L( )0 =
v L( )0

L
= =

.3 V

L
150

A

sec

General solution for the underdamped condition: i L( )t = i L( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t

Find constants: i L( )0 = i L( )∞ B B = i L( )0 i L( )∞ B .120 mA .800 mA

=B 680 mA

d
dt

i L( )0 = .α B .D ω D

.150
A

sec
.α B

ω
=D 476.667 mA

Write the full expression for iL(t), including all the constants that you find.

i L( )t .800 mA .e
.200 t ( )..680 mA cos( ).600 t ..477 mA sin( ).600 t

0 5 10 15 20 25 30 35 40

100

200

300

400

500

600

700

800

900

1000

1100

1200

i L( )t

( )mA

.800 mA

..800 mA 1 e
.200 t

.120 mA

time (ms)ECE 2210    Lecture 18 notes  p5
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Analysis of a circuit (not pictured) yields the characteristic equation below.  

0 = s2 .800 s 160000 R .60 Ω L .350 mH C .20 µF V in
.12 V

Further analysis yields the following initial and final conditions:

i L( )0 = .30 mA v L( )0 = .7 V v C( )0 = .5 V i C( )0 = .70 mA

i L( )∞ = .90 mA v L( )∞ = .0 V v C( )∞ = .12 V i C( )∞ = .0 mA

Write the full expression for iL(t), including all the constants that you find. i L( )t = ?

Include units in your answer

Solution:

s1 and s2 are the same, 
critically damped 

=
800 8002 .4 160000

2
400 s 1

.400
1

sec
s 2

.400
1

sec

Initial slope: d
dt

i L( )0 =
v L( )0

L
= =

.7 V

L
20

A

sec

General solution for the critically damped condition: i L( )t = i L( )∞ .B e
.s 1 t ..D t e

.s 2 t

Find constants: i L( )0 = i L( )∞ B B = i L( )0 i L( )∞ B .30 mA .90 mA

=B 60 mA

d
dt

i L( )0 = .B s D D .20
A

sec
.B s 1 =D 44

A

sec

Write the full expression for iL(t), 
including all the constants that you find. i L( )t .90 mA ..60 mA e

.400
sec

t
...44

A

sec
t e

.400
sec

t

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

i L( )t 90mA

( )mA

time (ms)
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ECE 2210    Lecture 19 notes   Second order Transient example & Systems A. Stolp
11/1/06R 1

.120 Ω
Ex 1. The switch at right has been in the open position for a 

long time and is closed (as shown) at time t = 0.

L .0.5 mH
R 2

.80 Ω
V S

.24 V

a)  What are the final conditions of iL and the vC?
C .1.5 µF

R 3
.40 Ω

R 3
.40 Ω

=V S 24 V i L( )∞ = =
V S

R 3
600 mA

=R 3 40 Ω v C( )∞ = =V S 24 V

b) Find the initial condition and intial slope of iL so that you could find all the constants in iL(t).  
Don't find iL(t) or it's constants, just the initial conditions. 

=R 1 120 Ω
Before the 
switch closes

i L( )0 = =
V S

R 1 R 3
150 mA

=V S 24 V

=R 3 40 Ω
v C( )0 = =.V S

R 3

R 1 R 3
6 V

Just after the switch closes:

=R 2 80 Ω .150 mA.18 V

=V S 24 V =
.18 V
.80 Ω

225 mA
v L( )0 = =.24 V .6 V 18 V d

dt
i L( )0 = =

.18 V

L
36000

A

sec

=
.6 V
.40 Ω

150 mA i C( )0 = =.150 mA
.18 V

R 2

.6 V

R 3
225 mA

=R 3 40 Ω .6 V

c) Find the initial condition and intial slope of vC so that you could find all the constants in vC(t).  
Don't find vC(t) or it's constants, just the initial conditions. 

v C( )0 = =.V S
R 3

R 1 R 3
6 V d

di
v C( )0 = =

.225 mA

C
150000

V

sec
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Systems
Now that we've developed the concept of the transfer function, we can now develop system block 
diagrams using blocks which contain transfer functions.

Consider a circuit:
L 1 R

H( )s =
V o( )s

V in( )s
=

R .L 2 s

R .L 1 s .L 2 s
=

R .L 2 s

R .L 1 L 2 sL 2

=
.L 2 s R

.L 1 L 2 s R

This could be represented in as a block operator:

V in( )s
.L 2 s R

.L 1 L 2 s R
V o( )s = .V in( )s H( )s

Transfer functions can be written for all kinds of devices and systems, not just electric circuits and the input and 
output do not have to be similar.  For instance, the potentiometers used to measure angular position in the lab 
servo can be represented like this:

θθ in( )s Kp = =.0.7
V

rad
0.012

V

deg
V out( )s = .K p θθ in( )s

In general:

H( )s =
X out( )s

X in( )s
X in( )s H( )s X out( )s = .X in( )s H( )s

Xin and Xout could be anything from small electrical signals to powerful mechanical motions or forces.

Two blocks with transfer functions A(s) and B(s) in a row would look like this:

.X in( )s A( )s
X in( )s A( )s B( )s X out( )s = ..X in( )s A( )s B( )s

The two blocks could be 
replaced by a single 
equivalent block:

X in( )s .A( )s B( )s X out( )s = ..X in( )s A( )s B( )s

.X in( )s A( )s
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Summer blocks can be used to add signals:

OR+ +X 1( )s X 1( )s X 2( )s X 1( )s X 1( )s X 2( )s

+ +
X 2( )s X 2( )s

or subtract signals:

OR+ +X 1( )s X 1( )s X 2( )s X 1( )s X 1( )s X 2( )s

_ _

X 2( )s X 2( )s

A feedback loop system is particularly interesting and useful:

+X in( )s A( )s X out( )s

+

B( )s

The entire loop can be replaced by a single equivalent block: Note that I've begun to drop the (s)
X in .B X out

+
X in( )s A( )s X out( )s = .A X in .B X out

+ = .A X in ..A B X out

X out ..A B X out = .A X in.B X out
B( )s .X out ( )1 .A B = .A X in

X out
X in

= A
1 .A B

= H( )s

The equivalent 
transfer function

X in( )s A( )s

1 .A( )s B( )s
X out( )s

.A( )s B( )s is called the "loop gain" or "open loop gain"
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Negative feedback is more common and is used as a control system:

X in .B X out
+

X in( )s A( )s X out( )s = .A X in .B X out
_ = .A X in ..A B X out

X out ..A B X out = .A X in.B X out
B( )s .X out ( )1 .A B = .A X in

X out
X in

= A
1 .A B

= H( )s

The equivalent 
transfer function

X in( )s A( )s

1 .A( )s B( )s
X out( )s

This is called a "closed loop" system, whereas a a system without feedback is called "open loop".  
The term "open loop" is often used to describe a system that is out of control.

The servo used in our lab can be represented by: 

Input position 
Potentiometer Circuit Gain Motor and Gears

θθ in θθ out+
K p G

K T

.s ..J L a s2 ..J R a
.B m L a s .B m R a

.K T K V
_

K p = .0.7
V

rad K p
Potentiometer constant

Motor Position Potentiometer

θθ out( )s

θθ in( )s

..G K T K p

.s ..J L a s2 ..J R a
.B m L a s .B m R a

.K T K V
..K p G K TH( )s = =

 See the appendix to lab 9 for the complete analysis
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4/8/03,
2/27/07

Diodes Notes ECE 2210
Diodes are basically electrical check valves.  They allow current to flow freely in one 
direction, but not the other.  Check valves require a small forward pressure to open the 
valve.  Similarly, a diode requires a small forward voltage (bias) to "turn on".  This is 
called the forward voltage drop.  There are many different types of diodes, but the two 
that you are most likely to see are silicon diodes and light-emitting diodes (LEDs).  
These two have forward voltage drops of about 0.7V and 2V respectively.

silicon diode LED
Mechanical check valve Diode

The electrical symbol for a diode looks like an arrow which shows the forward current 
direction and a small perpendicular line.  The two sides of a diode are called the 
"anode" and the "cathode" (these names come from vacuum tubes).  Most small 
diodes come in cylindrical packages with a band on one end that corresponds to the 
small perpendicular line, and shows the polarity, see the picture.  Normal diodes are rated by the average forward 
current and the peak reverse voltage that they can handle.  Diodes with significant current ratings are known as 
"rectifier" or "power" diodes.  (Rectification is the process of making AC into DC.)  Big power diodes come in a variety 
of packages designed to be attached to heat sinks.  Small diodes are known as "signal" diodes because they're 
designed to handle small signals rather than power.

Diodes are nonlinear parts
So far in this class we've only worked with linear parts.  The diode is 
definitely NOT linear, but it can be modeled as linear in its two regions 
of operation.  If it's forward biased, it can be replaced by battery of 0.7V 
(2V for LEDs) which opposes the current flow.  Otherwise it can be 
replaced by an open circuit.  These are "models" of the actual diode.  If 
you're not sure of the diode's state in a circuit, guess.  Then replace it 
with the appropriate model and analyze the circuit.  If you guessed the 
open, then the voltage across the diode model should come out less 
than +0.7V (2V for LEDs).  If you guessed the battery, then the current 
through the diode model should come out in the direction of the diode's 
arrow.  If your guess doesn't work out right, then you'll have to try the 
other option.  In a circuit with multiple diodes (say "n" diodes), there will 
be 2n possible states, all of which may have to be tried until you find the 
right one.  Try to guess right the first time.

Constant-voltage-drop model
This is the most common diode model and is 
the only one we'll use in this class.  It gives 
quite accurate results in most cases.

i d

forward bias

v d
reverse bias 0.7V

1 Assume the diode is operating in one of the linear regions (make an educated guess).

2 Analyze circuit with a linear model od the diode.

3 Check to see if the diode was really in the assumed region.
forward bias

4 Repeat if necessary. 50-100s of volts,
unless designed 
to break downActual diode curve

The characteristics of real diodes are actually more complicated than the 
constant-voltage-drop model.  The forward voltage drop is not quite constant at 
any current and the diode "leaks" a little current when the voltage is in the 
reverse direction.  If the reverse voltage is large enough, the diode will 
"breakdown" and let lots of current flow in the reverse direction.  A mechanical 
check valve will show similar characteristics.  Breakdown does not harm the 
diode as long as it isn't overheated.

Silicon pn 
junction diode, 
the most 
common type.

reverse bias

Zener diodes are special diodes designed to operate in the reverse breakdown region.  
Since the reverse breakdown voltage across a diode is very constant for a large range of 
current, it can be used as a voltage reference or regulator.  Zener diodes are also used for 
over-voltage protection.  In the forward direction zeners work the same as regular diodes.

V Z = zener 
voltage
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I recommend that you try some of the DC analysis 
in the Diode Circuit Examples handout before you 
proceed here. 

4

2

2

4

volts
Vp -

v in
Diodes in AC Circuits

Diodes are often used to manipulate AC 
waveforms.  We'll start with some triangular 
waveforms to get the general idea. time

4

2

2

4 v in
Diode doesn't conduct until vin 
reaches 0.7V, so 0.7V is a dividing 
line between the two models of the 
diode. 

vR 

0.7  vD 
slope =

.0.7 V

t 1
=

V p

t p
R time

t1 tp t2 tZ

t 1 = .
.0.7 V

V p
t p t2 = tZ - t1

4

2

2

4 vin
R 1

.10 Ω
When the diode conducts, 
you're left with a voltage divider

vR2
0.7 vDvR1R 2

.20 Ω time

V R2peak = .V p
.0.7 V

R 2

R 1 R 2

4

2

2

4 vinSometimes it's 
helpful to figure out 
what the voltage 
across the diode 
would be if it never 
conducted (light 
dotted line).

R 1
.20 Ω

vR2

R 2
.30 Ω 0.7  vD 

time

t1 tp t2 tZ

t2 = tZ - t1t 1 = .
.0.7 V

.V p
R 1

R 1 R 2

t p
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4

2

2

4
voltsHalf-wave rectification v in

What if the input is a sine wave?

VRL is now DC, 
although a bit bumpy.  
Some things are 
better if they're 
bumpy, but not roads 
and not DC voltages.

 vRL 

v D
time

Rectification is the process of making DC from AC.  
Usually the AC is derived from the AC wall outlet 
(often through a transformer) and the DC is needed 
for electronic circuitry modeled by RL here. 

4

2

2

4 v in

 vRL 

time
primary secondary

A "filter" capacitor (usually a big electrolytic) helps 
smooth out the bumps, although it sure looks like we 
could a bit bigger one here.  The remaining 
bumpiness is called "ripple", Vr is peak-to-peak ripple

4

2

2

4Full-wave rectification v in
The "center tap" in the secondary of this transformer 
makes it easy to get full-wave rectification.

ripple 
is less vRL 

time

The center-tap 
transformer is also good 
for making  +  supplies

4

2

2

4 v in
Bridge

 vRL 

time

A "bridge" circuit or "bridge rectifier" can give you 
full-wave rectification without a center-tap transformer, 
but now you loose another "diode drop" Bridge rectifiers are 

often drawn like this:
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Simple limiter circuits can be made with diodes.   
A common input protection to protect circuit from excessive input voltages 
such as static electricity. 

The input to the box marked "sensitive circuit" can't get higher than 
the positive supply + 0.7V or lower than the negative supply - 0.7V.

Put a fuse in the Vin line and the diodes can make it blow, providing 
what's known as "crowbar" protection.

Another example of crowbar protection:

If the input voltage goes above 16 V. the fuse will 
blow, protecting the circuitry.

Or, If the input voltage is hooked up backwards the 
fuse will blow, protecting the circuitry.

AM detector
v(t) AM modulation

A simple rectifier circuit
Returns the modulation signal

t

AM And a coupling capacitor can remove the DC

Battery Isolator AlternatorLike you might find in an RV.  One alternator is used to charge two 
batteries. When the alternator is not charging, the batteries, the 
circuits they are hooked to should be isolated from one another.  If 
not, then one battery might discharge through the second, 
especially if second is bad.  Also, you wouldn't want the 
accessories in the RV to drain the starting battery, or your uncle 
George from South Dakota might never leave your driveway.

+ Isolator
rectified 
internally to 
give a DC 
output -

Battery Backup Power D1Normally the power supply powers the load through D1.  
However, if it fails, the load will remain powered by the 
battery through D2.  Finally, D3 and R may be added to 
keep the battery charged when the power supply is 
working.  These sorts of circuits are popular in hospitals.

D2

D3 R

Diode Logic Circuits "OR" gate + VActually, both of the 
previous circuits are logic 
circuits as well.

"Flyback" Diode 
Every time the switch 
opens the inductor current 
continues to flow through 
the diode for a moment.  If 
the diode weren't there, 
then the current would arc 
across the switch.

inputs
"AND" gate Inductive

loadV+

inputs
Switch
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ECE 2210    Diode Circuit Examples
conducting not conductingBasic diode circuit analysis

1 Make an educated guess about each diode's state. or

2 Replace each diode with the appropriate model:
+ -

3 Redraw and analyze circuit.

4 Make sure that each diode is actually in the state you assumed: Vd< 0.7V Checkcurrent

Note: 0.7V is for silicon junction diodes & will be different for other types.  (2V for LED)

If any of your guesses don't work out right, then you'll have to start over with new guesses.  In a circuit with n diodes 
there will be 2n possible states, all of which may have to be tried until you find the right one.  Try to guess right the 
first time.

Ex1
Try reverse-biased, 
non-conducting model

R .1 kΩ Try forward-biased, conducting model
R .1 kΩ

.4 V
V D

.4 V > 0.7V V D
.0.7 V

Doesn't work, 
diode must be 
forward biased.

I D I D = =
.4 V .0.7 V

.1 kΩ
3.3 mA > 0

I D 0

The current is in the forward direction, 
confirming the assumption.Ex2

R .2 kΩ Try forward-biased, conducting model

R .2 kΩ
.4 V Try reverse-biased, 

non-conducting modelV D
.0.7 V

Check the 
diode voltageI D

I D = =
.4 V .0.7 V

.1 kΩ
4.7 mA< 0 V D

.4 V < 0.7V

Confirms diode 
is reverse biasedDoesn't work, diode 

must be reverse biased. I D
.0 mA

Ex3 R .820 Ω Try reverse-biased, 
non-conducting model

Doesn't work, diode 
must be forward 
biased.

V D= =.12 V .4 V 8 V > 0.7V.12 V .4 V Try forward-biased, conducting model

V D
.0.7 V V R

.12 V .4 V V D
.12 V .4 V =V R 7.3 V

R .820 Ω
.12 V .4 V

Check the 
diode currentIn each of these examples, my first guess was pretty stupid.  

I did that intentionally to show the process.  I expect that you 
can make better guess and thus save yourself some work. 

I = =
V R

R
8.9 mA > 0

Confirms diode 
is forward biasedECE 2210   Diode Circuit Examples   p1
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Ex4 R 1

.1 kΩ R 2
.1 kΩ

.5 V I 1
V D

.0.7 V = V R2Assume diode conducts:
I 2 I D Analyze

V R2 V D I 2
V R2

R 2
=I 2 0.7 mA

V R1
.5 V V D =V R1 4.3 V I 1

V R1

R 1
=I 1 4.3 mA

We assumed conducting (assuming a voltage), so check the current.

I D I 1 I 2 =I D 3.6 mA > 0,  so assumption was correct

Ex5 Now with an LED Assume diode conducts V D
.2 V = V R2R 1

.1 kΩ
Analyze

.5 V I 1 V R2 V D I 2
V R2

R 2
=I 2 2 mA

R 2
.1 kΩ

I 2 I D V R1
.5 V V D =V R1 3 V I 1

V R1

R 1
=I 1 3 mA

We assumed conducting (assuming a voltage), so check the current.

I D I 1 I 2 =I D 1 mA > 0,  so assumption was correct, 
but the current is probably too 
small to create noticeable light

Ex6 Regular diode, but smaller R1 Assume diode conducts V D
.0.7 V= V R2R 1

.1 kΩ R 2
.100 Ω

I 1 Analyze.5 V
V R2 V D I 2

V R2

R 2
=I 2 7 mA

I 2 I D
V R1

.5 V V D =V R1 4.3 V I 1
V R1

R 1
=I 1 4.3 mA

We assumed conducting (assuming a voltage), so check the current.

I D I 1 I 2 =I D 2.7 mA < 0,  so assumption was WRONG !

Assume diode does not conduct I D
.0 mA

R 1
.1 kΩ

Analyze I 1
.5 V

R 1 R 2
I 2 I 1

.5 V I 1
R 2

.100 Ω We assumed not conducting (assuming a current), so check the voltage..0 mA
V R2

.I 2 R 2 =V R2 0.455 V < 0.7V,  so assumption was correctI 2 I D
Actually, this final check isn't necessary, since first assumption didn't 
work, so this one had to.
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R 1

.1 kΩ

I 1 R 2
.300 Ω You can safety say that diode D1 doesn't conduct without rechecking 

later because no supply is even trying to make current flow through 
that diode the right way.

V S
.5 V

I 2 I D2

V D2
.0.7 V

R 3
.150 Ω Assume both D2 and D3 conduct.I D1 V D3

.0.7 V
I 3 I D3 Analyze V R1 V S V D2 V D2

=V R1 3.6 V

I 1
V R1

R 1
=I 1 3.6 mA

I 2
V D2

R 2
=I 2 2.333 mA

I 3
V D3

R 3
=I 3 4.667 mA

We assumed D1 & D2 conduct (assumed a voltage), so check currents.

I D2 I 1 I 2 =I D2 1.267 mA > 0,  so assumption OK

I D3 I 1 I 3 =I D3 1.067 mA < 0,  so assumption wrong
______________

Assume D2 conducts and D3 doesn't.

V D2
.0.7 V Analyze I 2

V D2

R 2
=I 2 2.333 mA

I D3
.0 mA

I 1
V S V D2

R 1 R 3
=I 1 3.739 mA

Assumed D2 conducts, so check D2 current. I D2 I 1 I 2 =I D2 1.406 mA > 0,  so assumption OK

Assumed D3 doesn't conduct, so check D3 voltage. V R3
.I 1 R 3 =V R3 0.561 V < 0.7V,   so OK

Once you find one case that works, you don't have to try any others.

Zener Diodes
Zener diodes are special diodes designed to operate in the reverse breakdown region.  Since 
the reverse breakdown voltage across the diode is very constant for a large range of current, 
it can be used as a voltage reference or regulator.  Diodes are not harmed by operating in 
this region as long as their power rating isn't exceeded.  In the forward direction zeners work 
the same as regular diodes.

+

V Z = zener 
voltage_

Now there are three possible regions of operation:

Same basic diode circuit analysis
1 Make an educated guess about each diode's state. 

2 Replace each diode with the appropriate model:

3 Redraw and analyze circuit.

4 Make sure that each diode is actually in the state you assumed: V D= 0.7V 0.7V > V D> VZ V Z
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Ex1 Typical shunt regulator circuit: V Z

.4.5 V R L
.500 Ω

I 1
I L

R 1
.250 Ω Assume conducting in breakdown region

V S
.10 V

I L V D V Z

I L
V Z

R L
=I L 9 mA

R L
.500 Ω

V Z
.4.5 V I 1

V S V Z

R 1
=I 1 22 mA

Assumed a conducting region, so check the current to see if 
the current flows in the direction shown.

I D I 1 I L =I D 13 mA > 0,  so assumption OK

Ex2 What if RL is smaller? R L
.150 Ω

Assume conducting in breakdown region V D V Z I L
V Z

R L
=I L 30 mA

I 1
V S V Z

R 1
=I 1 22 mA I D I 1 I L =I D 8 mA < 0,  so assumption is WRONG !

Circuit "falls out of regulation"

Assume not conducting

I 1 I L = I 1
V S

R 1 R L
=I 1 25 mA

I L Assumed a non-conducting region, so check the voltage to 
see if it's in the right range.

+
V D V D

.
R L

R 1 R L
V S =V D 3.75 V < =V Z 4.5 V

_ so this assumption is OK

Ex3 What if VS is smaller instead of RL? V S
.6 V R L

.500 Ω

Assume conducting in breakdown region V D V Z I L
V Z

R L
=I L 9 mA

I 1
V S V Z

R 1
=I 1 6 mA I D I 1 I L =I D 3 mA < 0,  so assumption is WRONG !

Circuit "falls out of regulation"

Assume not conducting I L = I 1
V S

R 1 R L
=I 1 8 mA

Assumed a non-conducting region, so check 
the voltage to see if it's in the right range.

V D
.

R L

R 1 R L
V S =V D 4 V < =V Z 4.5 V

so this assumption is OK
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Exam-type Diode Circuit Examples
On an exam, I usually tell you what assumptions to make about the diodes, then you can show that you know how to 
analyze the circuit and test those assumptions.  Since everyone starts with the same assumptions, everyone should do 
the same work.

In the circuit shown, use the constant-voltage-drop model for the silicon diode.

a) Assume that diode D1 does NOT conduct. 
Assume that diode D2 does conduct.

D 1 D 2

I R1Find VR2, VR1, IR1, & ID2, based on these assumptions.  
Stick with these assumptions even if your answers come 
out absurd.  Hint: think in nodal voltages.

I D2
V 2

.2 V
R 1

.50 Ω
V 1

.1.8 V
V R2 =  _________ V R2

R 2
.260 Ω

V R1 =  _________

I R1=  __________

I D2=  __________

.0.7 V.1.3 V
Solution to a)

I R1
V R2 V 2

.0.7 V =V R2 1.3 V I D2
V R1 V 1 V R2 =V R1 0.5 V V 2

.2 V
R 1

.50 Ω
V 1

.1.8 V
I R1

V R1

R 1
=I R1 10 mA

V R2
R 2

.260 Ω

I R2
V R2

R 2
=I R2 5 mA

I D2 I R2 I R1 =I D2 5 mA

b) Based on your numbers above, does it look like the assumption about D1 was correct?        yes        no
(circle one)How do you know?  (Specifically show a value which is or is not within a correct range.)

yes V D1 = =V R1 0.5 V < 0.7V

c) Based on your numbers above, does it look like the assumption about D2 was correct?           yes        no
(circle one)How do you know?

no =I D2 5 mA < 0

d) Based on your answers to b) and c), which (if any) of the following was not correctly calculated in part a.

V R2 V R1 I R1 I D2
(circle any number of answers)

Circle all in this case
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Assume that diode D1 is conducting and that diode D2 is not conducting.

a) Find VR1, IR1, IR3, ID1, VR2 based on these assumptions.  
Do not recalculate if you find the assumptions are wrong. D 1 R 1

.200 Ω
V R1 =  __________ V R1

I D1 I R1
I R1 =  __________ V in

.3 V

I R3 =  __________

D 2I D1 =  __________ R 2
.100 ΩV R2

I R3V R2 =  __________ I R2

Solution: R 3
.400 Ω

V R1
.0.7 V

D 1 R 1
.200 ΩI R1

V R1

R 1
=I R1 3.5 mA

V R1
I D1 I R1

V in
.3 V

I R3
V in

.0.7 V

R 2 R 3
=I R3 4.6 mA

I D1 I R3 I R1 =I D1 1.1 mA
D 2 R 2

.100 ΩV R2I R2 I R3 I R3 I R2
V R2

.I R2 R 2 =V R2 0.46 V

R 3
.400 Ω

(circle one)

b) Was the assumption about D1 correct? yes no

How do you know?  (Specifically show a value which is or is not within a correct range.)

yes =I R2 4.6 mA> 0

c) Was the assumption about D2 correct? yes no
(circle one)How do you know?

yes VD2 = =V R2 0.46 V < 0.7V

d) Based on your answers to b) and c), which (if any) of the following was not correctly calculated in part a.

V R1 I R1 I R3 I D2 V R2
(circle any number of answers)

Circle none in this case
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A voltage waveform (dotted line) is applied to the circuit shown.  
Accurately draw the output waveform (vo) you expect to see.  
Label important times and voltage levels.

V Z
.4 V

R 1
.10 Ω v o

If diode doesn't conduct:
v o 0

zener
v in

R 2
.20 Ω

Positive half

Diode conducts at: .0.7 V input at time: =..
.0.7 V
.10 V

10 ms 0.7 ms

Maximum:
R 1

.0.7 V

v o
.( ).10 V .0.7 V

R 2

R 1 R 2
=v o 6.2 V

.10 V
R 2

Negative half

Diode conducts at: .4 V input at time: =.20 ms ..
.4 V
.10 V

10 ms 16 ms

Maximum:
R 1

.4 V

v o
.( ).10 V .4 V

R 2

R 1 R 2
=v o 4 V

.10 V
R 2

0 2 4 6 8 10 12 14 16 18 20 22 24

12

10

8

6

4

2

2

4

6

8

10

12
v o

v in
6.2V

16ms

ms
0.7ms

-4V
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A voltage waveform (dotted line) is applied to the circuit shown. 
 Accurately draw the output waveform (vo) you expect to see.  
Label important times and voltage levels.

R 1
.60 Ω

v o

LED R 2
.40 Ω

v in

If diode doesn't conduct:

v o = .
R 2

R 1 R 2
v in

=..
R 2

R 1 R 2
10 V 4 V

When: v in
..

R 1 R 2

R 2
2 V =v in 5 V at: .5 ms Diode begins to conduct

When diode conducts:
v o = .2 V

.2 V

0 2 4 6 8 10 12 14 16 18 20 22 24

12

10

8

6

4

2

2

4

6

8

10

12

v in

4V

2V

v o5ms

ms
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Diode Physics (The simple version) EE 2210 A.Stolp  3/22/01, 
rev, 2/25/16

FYI Only, You don't need to know this
Silicon atoms

Silicon atoms each have 4 valence electrons (electrons in their outermost shell).  That leaves 4 
spaces in the outer shell of 8.  This makes silicon a very reactive chemical, like carbon, which 
has the same valence configuration.   

Silicon crystals
Each atom covalently bonds with four neighboring atoms to 
form a tetrahedral crystal, which we'll represent in 2D.

Tetrahedral
crystal

2-dimensional representation

In the pure, "intrinsic" crystal, practically all the electrons are used in bonds and all the spaces are filled, which 
leaves almost no electrons free to move and thus no way to make current flow.

By the effects of heat, light and/or large electric fields, a few electrons do break free of the bonds and become 
"free" carriers.  That is, they're free to move about crystal and "carry" an electrical current.

hole electron

carrier movement more carrier movement

Interestingly, the space that was vacated by the electron also acts like a carrier.  This pseudo-carrier is called a 
"hole" and it acts like a positively charged carrier.

Unless there's a lot of heat or light, the intrinsic silicon is still a very bad conductor.  
Silicon is considered a semiconductor.

Doping p-type n-type
Some atoms, like boron and aluminum 
naturally have 3 valence electrons in 
their outer shells.

Some atoms, like arsenic and 
phosphorus naturally have 5 valence 
electrons in their outer shells.

If you replace some of the silicon atoms in a crystal 
with boron there won't be quite enough electrons to fill 
the crystalline bond structure and unfilled spaces will 
act just like free holes.  This "doped" silicon crystal is 
now called an p-type semiconductor.  The p refers to 
the "extra" "positive" carriers.

If you replace some of the silicon atoms in a crystal 
with arsenic the 5th electron doesn't fit into the 
crystalline bond structure and is therefore free to 
roam about and be a carrier.  This "doped" silicon 
crystal is now called an n-type semiconductor.  The 
n refers to the "extra" negative carriers.

free
electron

free
hole

Diode Physics (The simple version)



Diode Physics (The simple version)   p.2
p-type n-type

It turns out that the free carriers are the most 
important things in the semiconductor 
crystals, so we can simplify the drawings to 
show only these free carriers.

circles represent free holes dots represent free electrons
PN Junction

When a p-type semiconductor is created next 
to an n-type, some of the free electrons from 
the n side will cross over and fill some of the 
free holes on the p side.  This makes the p 
side negatively charged and leaves the n side 
positively charged.  When the voltage across 
the junction reaches about 0.7 V the electrons 
find it too difficult to move against the charge 
and the process stops.

_ ~ 0.7V
p-type + n-type

A region near the junction is now depleted of 
carriers and (surprise) is called the depletion 
region.

\_______/
depletion regionReverse bias

"positive" holes move 
toward the negative voltage

negative electrons move 
toward the positive voltage

This pn junction is now a diode.  If you place 
an external voltage across the diode in the 
reverse bias direction, the depletion region 
gets bigger and no current flows.

_
This reverse bias region can be used as a heat 
or light sensor since the only current flow 
should be due to a few carriers produced by 
these effects.

+

The reverse biased diode can also be used as a 
voltage variable capacitor since it is essentially 
an insulator (the depletion region) sandwiched 
between two conducting regions.

With reverse bias the depletion region gets bigger

Forward bias
If you place an external voltage across the 
diode in the forward bias direction, the 
depletion region shrinks until your external 
voltage reaches about 0.7V.  After that the 
diode conducts freely..

_
+

With forward bias the depletion region gets smaller 
and eventually (at about 0.7V) conducts freely.

Diode Physics (The simple version)   p.2 Diode 



Transistor Notes (BJT) ECE 2210 A.Stolp
3/25/00 rev, 11/21/06

Imagine, if you will, a hydraulic device where the flow in a small pipe controls a valve in a 
larger pipe.  The greater the flow in the small pipe the more it opens the valve in the 
large pipe.  Take a look at the figure to the right.  As an engineering student you should 
immediately see that this could be a useful device.   One use might be as a 
flow-controlled on/off valve (switch).  Or, depending on the flows and pressures involved, 
it  could be used as an amplifier.  That is, it could be used to make some hydraulic 
signal larger and more powerful.  (A signal is a flow or pressure which conveys 
information and an amplifier is a device which increases the power of a signal.)  

The electrical equivalent of this flow-controlled valve is a transistor.  
Specifically the NPN bipolar junction transistor (BJT).  (There are 
other types.)  The symbol for a transistor is shown below.  Notice that it's a 
three-terminal device.  That's because the control current (into the base) and 
the controlled current (into the collector) join together to form a single current 
out of the bottom (the emitter current).  The valve drawn below is a more 
accurate analogy for the electrical transistor.

Collector

I C

Base

I B

I E

EmitterNPN transistor

A transistor has three terminals-- the base, the collector, and the emitter.  The current flow from the 
collector to the emitter (through the transistor) is controlled by the current flow from the base to the 
emitter.  A small base current can control a much larger collector current.  Often they are related by a 
simple factor, called beta (β).  For a given base current, the transistor will allow β  times as much 
collector current.  The key word here is allow.  The transistor doesn't make the current flow-- some 
outside power source does that.  It simply regulates the current like the valve above.  Big power 
transistors usually have a βs between 20 and 100.  For little signal transistors, β is usually between 100 
and 400.  Darlington transistors (really two transistors in one package) can have βs in the 1000s.

A transistor can be used as a current controlled switch.  When there's no base current, it's off, like 
an open switch.  When there is a base current, it's on.  If something outside of the transistor is 
limiting the collector current to less than β times the base current then the transistor will turn on as 
much as it can, like a closed switch.  A transistor that is off is operating in its "cutoff" region.  A 
transistor that is fully on is operating in its "saturation" region.  A transistor that is partially on is in 
active control of its collector current (β times the base current) and is operating in its "active" 
region.  (Note the valve analogy has a problem with the "open" and "closed" terms.)

There are many types of transistors.  PNP transistors work like the NPN transistors, except that all 
the currents and voltages are backwards.  Field-effect transistors (FETs) are are controlled by 
voltage instead of current and come in many varieties.  In this class we'll only work with NPN 
transistors. Transistor Notes (BJT)    p1



Silicon diodes are made of two layers of doped silicon, a P layer is 
the anode and an N layer is the cathode.  A  P-N junction is a diode.

Bipolar junction transistors (BJTs) consist of three layers 
of doped silicon.  The NPN transistor has a thin layer of 
P-doped silicon sandwiched between two layers of 
N-doped silicon.  Each P-N junction can act like a diode.  
In fact, this is a fairly good way to check a transistor with 
an ohmmeter (set to the diode setting).

The base-emitter junction always acts like a diode, but 
because the base is very thin, it makes the other junction act 
like a controlled valve (you probably don't want to know the 
details, so call it magic).

A bipolar junction transistor contains 
two diode junctions

Transistor Symbols
PNP

Cutoff Active Saturation

reverse reverse forward

reverse forward forward

Junction bias

Notice the subscripts Replace vBE with vEB and 

v BE = v B v E vCE with vEC in equations below 

v CE = v C v E

Modes or regions of operation (vBE and vCE are approximate) 

Cutoff (off) Active (partially on) Saturation (fully on)
vBE < 0.7V vBE ~ 0.7V vBE ~ 0.7V |

|
|
|
|
|
| 

iB = 0 iB > 0 iB > 0 input from 
logic circuitsvCE > 0.2V vCE ~ 0.2V

iC = 0 iC = βiB = αiE α ~ 1 iC < βiB limited by something 
outside of the transistorcontrolled by the transistor

Motor Driver
The Transistor as a switch
One of the most common uses of a transistor is as a current-controlled switch.  Transistor switches 
are the basis for all digital circuits, but that's probably not where you'll use the transistor.  More 
likely, you'll want to control a high-current device, like a motor, with an integrated-circuit output from 
a computer or logic circuit .  The small integrated circuit won't be able to supply enough current to 
run the motor, so you'll use a transistor to switch the larger current that flows through the motor.  The 
input is hooked to the base of the transistor.  (Often through a current limiting resistor, since VB will 
only be 0.7V when the transistor is on.)  A small IB can switch on the much larger IC and VCE can be 
as low as 0.2V.     

VCC: The terminal marked VCC above is just a circuit terminal hooked to a power supply, drawn in 
dotted lines here, but usually not shown at all.  Power supply wires, like ground wires are often not 
shown explicitly on schematics.  It makes the schematics a little less cluttered and easier to read. 

Diode: If you're switching an inductive load, like a motor, you should add a diode so that you're not 
trying to switch off the motor current instantly.  The diode (called a flyback diode when used like this) 
provides a path for the current still flowing through the motor when the transistor is switched off. 
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H-bridge: Of course, if you want to make the motor turn in both 
directions you'll need a more complex circuit.  Look at the circuit at right, 
it's has the shape of an H, hence the name.  If transistors Q1 and Q4 are 
on, then the current flows as shown, left-to-right through the motor.  If 
transistors Q2 and Q3 are on, then the current flows the other way through 
the motor and the motor will turn in the opposite direction.  (The motor 
here is a permanent-magnet DC motor.)  In my circuit, the top two 
transistors are PNPs, which makes the circuit more efficient.  The 
H-bridge could also be made with all NPNs or with power MOSFET 
transistors. 

An H-bridge requires four inputs, all operated in concert.  To turn on Q1 and Q4, 
as shown, Vin1 would have to be low and Vin4 would have to be high.  At the same time, the other 
two transistors would have to be off, so Vin2 would have to be high and Vin3 would have to be low.   

If the control circuit makes a mistake and turns on Q1 and Q3 (or 
Q2 and Q4) at the same time you'll have a toaster instead of a 
motor driver, at least for a short while.  

The circuit at left requires only two inputs.  
Transistors  Q5 and Q6 work as inverters, when 
their inputs are high, their outputs are low and 
vice-versa.  The resistors are known as pull-up 
resistors.

The H-bridge should also include flyback diodes.

Linear Amplifiers
The objective of a linear amplifier is to output a faithful reproduction of an input signal, only bigger.  
A voltage amplifier makes the signal voltage bigger.  A current amplifier makes the signal current 
bigger.   Many amplifiers do both.  All amplifiers should make the signal power bigger (depends 
somewhat on the load).  Of course that means that they need a source of power, generally DC 
power from a battery or power supply.  The signals are usually AC.

Unlike transistor switches, which operate in cutoff and saturation, linear amplifiers must operate in the 
active region.  Important relations:   (active region)

v BE = v B v E = .0.7 V v CE = v C v E > .0.7 V (~ 0.2V if saturated)

i C = .β i B i C = .α i E ~ i E
Bias: 
Outside of the active region the input (base current) doesn't linearly control the output (collector 
current).  To work as an linear amplifier, a transistor must operate in the active region.  That means 
that the transistor must be turned on part way even when there's no signal at all.   Look back at the 
valve analogy, if small fluctuations in the horizontal pipe flow (iB) should produce larger but similar 
fluctuations in the vertical pipe flow (iC), then there must always be some flow.  If either flow ever 
stops, the horizontal pipe flow (iB) is no longer in control.  

All voltages and currents can be shown in 
three different waysTo work in the active region iB and iC must be positive for all 

values of the AC signals.  iB and iC must be biased to some 
positive DC value.   We use capital letters (IB and IC) for these 
DC bias values and lower case letters (ib and ic) for the AC 
signals that will appear as fluctuations of these DC values

examples meaning
CAPCAP V B I C DC, Bias

smsm v b i c AC, signal

smCAP v B i C DC and AC Together
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The objective of bias then, is to partially turn on the transistor, to turn it, sort-of, half-way on.  Now if 
I twiddle iB, iC will show a similar, but bigger, twiddle-- that's the whole idea.  The transistor should 
never go into cutoff for any expected input signal, otherwise you'll get clipping at the output.  
Clipping is a form of distortion, where the output no longer looks like the input.

Furthermore, the transistor must not saturate.  That will also cause clipping at the output.

Because β can vary widely from transistor to transistor of the same part number and VBE changes 
with temperature, achieving a stable bias can be a bit of a problem.  Usually an emitter resistor 
(RE) is needed to stabilize the bias.

DC Analysis in the active region
DC analysis applies to both switching and bias, although the circuits we'll look 
at here will include an RE and we'll be working in the active region, meaning they 
are bias circuits.  The key to DC analysis with an RE is usually finding VB. 

The circuit at right shows a typical bias arrangement. The equations below 
are for that circuit, adapt them as necessary to fit your actual circuit.

If you can neglect IB:
Often in quick-and-dirty analysis you can neglect the base current, IB.  In that case:

V B= .V CC
R B2

R B1 R B2
V E = V B

.0.7 V I E =
V E

R E
~ I C V C= V CC

.I C R C

This assumption is OK if: R B1 || R B2 << .β R E

Quick check: R B1 < .10 R E and/or R B2 < .10 R E Should result in <10% error if β =100

If you can't neglect IB:
Then you need to make a Thevenin equivalent of the base bias resistors.

R BB=
1

1

R B1

1

R B2

(Thevenin Eq.)V BB= .V CC
R B2

R B1 R B2

From the base's point-of-view, the emitter resistor will look (β + 1) 
times bigger than it really is.  This is because (β + 1) times as 
much current flows through RE than into the base.  We can 
ignore the fact that the current is bigger if we pretend that the 
resistor is bigger.  That leads to the simplified circuit.  (Usually 
we use β  as the factor rather than (β + 1), after all β just isn't that 
well known anyway.)

I B =
V BB

.0.7 V

R BB
.β R E

I C = .β I B ~ I E V E = .I E R E ~ .I C R E V B= V E
.0.7 V

V C= V CC
.I C R C

OR: V B= ..I B β R E
.0.7 V V E = V B

.0.7 V I E =
V E

R E
~ I C V C= V CC

.I C R C
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Examples, DC (Bias) Analysis
V CC

.20 V Given:1) V B
.3 V,  regardless of current into base

R C
.10 kΩ V CC

.20 V R C
.10 kΩ R E

.2.7 kΩ

Find IC, VC, VCE, and PQ:

Solution:

V B
.3 V V E V B

.0.7 V =V E 2.3 V
R E

.2.7 kΩ

I E
V E

R E
=I E 0.852 mA ~ I C I E

V C V CC
.I C R C =V C 11.48 V

V CE V C V E =V CE 9.18 V > 0.2V,  OK, is in active region

P Q
.V CE I C =P Q 7.82 mW

2) V CC
.10 V Given: may neglect IB

V CC
.10 V V C

.7.0 V R B1
.8 kΩ R B2

.2 kΩ R E
.220 ΩI C R C

R B1
.8 kΩ Find VB, VE, IC, RC, VCE, IRB2, and PQ:V C

.7.0 V
Solution:

V B
.V CC

R B2

R B1 R B2
=V B 2 V

I RB2 R E
.220 Ω V E V B

.0.7 V =V E 1.3 V
R B2

.2 kΩ

I E
V E

R E
=I E 5.91 mA ~ I C I E

R C
V CC V C

I C
=R C 508 Ω V CE V C V E =V CE 5.7 V > 0.2V,  OK, is in active region

I RB2
V B

R B2
=I RB2 1 mA P Q

.V CE I C =P Q 33.68 mW

V CC
.12 V Given: may NOT neglect IB β 1503)

V CC
.12 V V E

.2.0 V V C
.6 V I RB2

.0.1 mA I C
.4 mA

R B1 I C
.4 mA R C

Find RE, RC, VB, IB, RB2, and RB1:
V C

.6 V
Solution:

V CE V C V E =V CE 4 V > 0.2V,  is in active region
V E

.2.0 V
I E ~ I C I E I C R E

V E

I E
=R E 500 Ω

R B2 R E
R C

V CC V C

I C
=R C 1.5 kΩ

I RB2
.0.1 mA V B V E

.0.7 V =V B 2.7 V I B
I C

β
=I B 0.027 mA

R B2
V B

I RB2
=R B2 27 kΩ R B1

V CC V B

I RB2 I B
=R B1 73.4 kΩ

Transistor Notes (BJT)    p5



Ω Ω

AC Analysis of Common emitter (CE) amplifier

4

8

12

16

SignalsWith an RE, any AC signal applied to the base 
will then also appear just as big at the emitter 
(just lower by 0.7V DC).  The AC signal current 
through RE, will be about the same as through 
RC, so the AC signal voltage across RC will be 
bigger than that across RE by the ratio of RC/RE. 
Recalling that the signal at the emitter is about 
the same as the signal at the base...

volts

v C

V C

base to collector AC gain  =
v c

v b
=

R C

R E
v B

difference 
~ 0.7V

V B
v E V E

vE follows vB, just 0.7V DC lower

If a capacitor is placed in parallel with RE then the effective AC resistance in the emitter goes way down and the gain 
goes way up.  In that case we need a way to estimate the AC resistance within the base-emitter junction itself.

This is called the small-signal emitter resistance: r e =
.25 mV

I C

To find the gains when the input has a source resistance and the output is connected to a load resistor, the 
calculations become a little more complex.  YOU DON'T NEED TO KNOW THE FOLLOWING MATERIAL.

R E is the DC resistance from emitter to ground

R e is the AC signal resistance from emitter to ground, may be zero

Input impedance: R i = R B1 || R B2 || .β r e R e

Output impedance:R o = R C || r o <-- ro Often neglected

AC collector resistance: r c = R C || R L || r o
ro is a characteristic of the transistor, and is often neglected

Voltage gain: A v =
v o

v b
=

r c

r e R e

OR:
v o

v s
= .

R i

R S R i

r c

r e R e

Current gain: A i =
i o

i i
= .

r c

r e R e

R i

R L
= .A v

R i

R L

There are several other types of transistor amplifiers, but we won't look at them here.

AC Signal Example

R C
.1 kΩ

If the vs signal were applied at the base, an AC signal would 
also appear at the collector. How much larger would it be?  
(Voltage gain).

R E
.120 Ω base to collector AC gain  =

v c

v b
= =

R C

R E
8.33 times bigger
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ECE 2210    Transistor Switching Circuit Examples A.Stolp 11/21/06
rev 12/3/14

Ex.1
V CC

.12 V

I C = __________ V CC
.12 V

R C
.100 Ω

The little open circles are 
connections, in this case to 
unseen power supplies.

V C= ___________
V B

.0.7 V

R B
.5 kΩ V B P Q = ___________

V BB
.5 V

I B = ___________ V BB
.5 V

If: β 100 I B

V BB
.0.7 V

R B
=I B 0.86 mA I C

.β I B =I C 86 mA

V C V CC
.R C I C =V C 3.4 V

P Q
.V C I C =P Q 292.4 mW

If: β 200 I B

V BB
.0.7 V

R B
=I B 0.86 mA I C

.β I B =I C 172 mA

V C V CC
.R C I C =V C 5.2 V

must be in saturation: V C
.0.2 V

I C

V CC V C

R C
=I C 118 mA

P Q
.V C I C =P Q 23.6 mW

Since saturation can depend on β, You usually assume a small β when designing a circuit that should 
saturate (a switching circuit). 

If: R C
.50 Ω I C

.β I B =I C 172 mA V C V CC
.R C I C =V C 3.4 V

same β 200 P Q
.V C I C =P Q 584.8 mW

Saturation also depends on RC and VCC.

What is the largest value that RB could be and still keep the transistor in saturation?

I Csat

V CC
.0.2 V

R C
=I Csat 236 mA I B

I Csat

β
=I B 1.18 mA R Bmax = =

.5 V .0.7 V

I B
3.644 kΩ

Ex.2 V CC
.10 V

V B
.6 V V E

.5.3 V R E
.50 Ω

V B= __________

P Q = ?
I E

V E

R E
=I E 106 mA Doesn't depend on β

V BB
.6 V

V E = ?
I B = ___________

I B

I E

β 1
=I B 0.5 mA ~ =

I E

β
0.53 mA

I E = __________ =R E 50 Ω
If β is big enough.

P Q
.V CC V E I E =P Q 0.498 W
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Ex.3 If the load must be connected to ground, 

a PNP transistor is often a better choice.
Let's assume a a small β and 
saturation and find the RB necessary.

a small β: β 20
V CC

.20 V
V C V CC

.0.2 V =V C 19.8 V

V B= ? R C
.15 Ω

P Q = ?
I Csat

V C

R C
=I Csat 1.32 A

I B = ?
V C= ?

I C = ?
R B = ? I B

I Csat

β
=I B 66 mA

R C
.15 Ω V B V CC

.0.7 V =V B 19.3 V

R B
V B

I B
=R B 292 Ω

P Q
..0.2 V I C =P Q 34 mW

Ex.4 V CC
.15 V

Sometimes one transistor can't 
provide enough amplification.

I R2= ?

Sometimes you want to "invert" the 
input (make high off and low on).

R C
.30 Ω

R 2
.500 Ω

I C2= ?

V C2 = ?

V C1 = V B2 = ? β 2 25

I B2= ?
V B1 = ?

β 1 80
V BB

.5 V R B
.4 kΩ

I B1= ?

Switch open Switch closed

I B1o 0 V B1o
.0 V

I B1c
.5 V .0.7 V

R B
=I B1c 1.08 mA

V B2o
.0.7 V

assume Q1 is in saturation V C1c
.0.2 V

I B2o
V CC

.0.7 V

R 2
=I B2o 28.6 mA

I C1c
V CC V C1c

R 2
=I C1c 29.6 mA

I R2o I B2o =I R2o 28.6 mA
=.β 1 I B1c 86 mA IC1 is controlled by R2  

I C2o
.β 2 I B2o =I C2o 715 mA

V B2c V C1c =V B2c 0.2 V
V C2o V CC

.R C I C2o =V C2o 6.45 V
I B2c 0 I C2c 0 = I RCc

Q2 must be in saturation: V C2o
.0.2 V

When the switch is open, current flows in 
through the load resistor, RC, When it is 
closed, no current flows though the load.  
This is an example of logical "inversion".

I C2o
V CC V C2o

R C
=I C2o 493.3 mA
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V CC

.5 VEx.5 Modified from F07 Final 

A transistor is used to control the current flow through an inductive 
load (in the dotted box, it could be a relay coil or a DC motor).

L L
.50 mH

a) Assume the transistor is in saturation (fully on) and that switch 
has been closed for a long time.  What is the load current?

Inductive load
I C = ?

R L
.8 Ω

I Csat
V CC

.0.2 V

R L
=I Csat 600 mA

R S
.200 Ω R 1

.80 Ω
b) β 80 find the minimum value of VS, so that 

the transistor will be in saturation.

V S
I Bmin

I Csat

β
=I Bmin 7.5 mA

V Smin
.I Bmin R S R 1

.0.7 V =V Smin 2.8 V

Use this VS for the rest of the problem.

c) Does the diode in this circuit ever conduct a significant current?  If yes, when and how much?

When the switch opens. I Dmax = =I Csat 600 mA from part a)

d) You got a bad transistor. β 60 Find the new  IC, and VCE and PQ.

I C = ? I C
.β I Bmin =I C 450 mA Now operating in active region

V CE= ? V CE V CC
.R L I C =V CE 1.4 V

P Q = ? P Q
.V CE I C =P Q 0.63 W

=β 60 Use this for the rest of the problem.

c) Find the minimum value of RL so that the transistor will be in saturation.

I B
V Smin

.0.7 V

R S R 1
=I B 7.5 mA

I Cmax
.β I B =I Cmax 450 mA

R Lmin
V CC

.0.2 V

I Cmax
=R Lmin 10.7 Ω

d) RL, can't be changed, so find the maximum value of R1 so that the transistor will be in saturation.

=I Csat 600 mA from part a)

I Bmin
I Csat

β
=I Bmin 10 mA

R 1max = =
V Smin

.0.7 V

I Bmin
R S 10 Ω
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V S

.10 VEx.6 From F05 Final with modifications from F06 Final 

A transistor is used to control the current flow through an inductive 
load (in the dotted box, it could be a relay coil or a DC motor).

R 1
.200 Ω

a) β 25 Assume the transistor is in the active 
region, find Isw, IL, VL, VEC and PQ. Inductive load

R S
.300 Ω +

L L
.50 mH

I B
V S

.0.7 V

R S R 1
=I B 18.6 mA= I sw

I sw I L V LI L
.β I B =I L 465 mA

R L
.10 Ω =R L 10 Ω

V L
.I L R L =V L 4.65 V _

V EC V S V L =V EC 5.35 V

P Q
.V EC I L =P Q 2.488 W

b) Was the transistor actually operating in the active region?       yes     no      (circle one) yes

How do you know?  (Specifically show a value which is or is not within a correct range.)

=V EC 5.35 V > .0.2 V

c) Find the maximum value of R1, so that the transistor will be in saturation.

If saturated: V EC
.0.2 V

I Csat
V S

.0.2 V

R L
=I Csat 0.98 A

I Bmin
I Csat

β
=I Bmin 39.2 mA

R 1max = =
V S

.0.7 V

I Bmin
R S 63 Ω NOT POSSIBLE

d) =R 1 200 Ω and can't be changed, find the minimum value of β so that the transistor will be in saturation.

=I Csat 0.98 A β min
I Csat

I B
=β min 52.7

e) How much power is dissipated by the transistor if it has the β you found in part d)

P Q
..0.2 V I Csat =P Q 0.196 W

f) Does the diode in this circuit ever conduct a significant current?  If yes, when and how much?

When the switch opens. I Dmax = =I Csat 0.98 A from part a)

g) The switch is open for a while.  What is the load current (IL) now? 0

I Dmax = =I Csat 980 mAECE 2210    Transistor Switching Circuit Examples,  p4
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Ex.7 From F13 Final
R 2

.40 Ω
R 1A transistor is used to control the current flow through an inductive 

load (in the dotted box, it could be a relay coil or a DC motor).
Q 1

V CC2
.5 V

a) In order for current to flow in through the load, the switch 
should be:

β 1 100
Q 2i) closed or ii) open (Circle one)

b) Assume the switch has been in the position you 
circled above for a long time.  IL is 1.3A.  Find the 
power dissipated by transistor Q2 (neglect base 
current and VBE).

switch

I L
.1.3 A P Q2 = ? R L

.3 Ω Inductive load

V CE2 V CC2
.I L R L =V CE2 1.1 V L L

.60 mH

I LP Q2
.V CE2 I L =P Q2 1.43 W

c) This is an unacceptable power loss, so you would like to determine the 
minimum  β2 needed so that Q2 will be in saturation.  Assume Q1 is also 
in saturation.  You may assume IE = IC for both traistors.

=R L 3 Ω

β 2min= ?

I L

V CC2
.0.2 V

R L
=I L 1.6 A = I C2

V E2 V CC2
.0.2 V =V E2 4.8 V

V B2 V E2
.0.7 V =V B2 5.5 V

V C1 V B2
.0.2 V =V C1 5.7 V

I C1

V CC1 V C1

R 2
I B2 I C1 =I B2 57.5 mA β 2min= =

I L

I B2
27.826

Better answer I B2
.I C1

β 1 1

β 1
=I B2 58.075 mA β 2min= =

I L

I B2
1 26.551

You replace Q2 with a new transistor that has a β greater than what you just calculated.

d) How much power is dissipated by the new transistor Q2 (neglect base current and VBE)? P Q2 = ?

P Q2
..0.2 V I L =P Q2 320 mW

e) What is the maximum value of R1 needed to saturate Q1? =β 1 100

I B1min

I C1

β 1
=I B1min 0.575 mA V B1 V B2

.0.7 V =V B1 6.2 V

R 1max

V CC1 V B1

I B1min
=R 1max 3.13 kΩ

f) Does the diode in this circuit ever conduct a significant current?  If yes, when and how much?

When the switch closes. I Dmax = =I L 1.6 A from part c)
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.8 V

Ex.8 From F12 Final
Q 1 I LA couple of transistors are used to control the current 

flow through an inductive load.  The switch has been 
closed, as shown, for a long time. Inductive

 load
a) You measure the voltage at each collector 

(referenced to ground) as shown on the drawing.  
Find the power dissipated by transistor Q2 .

.5 V
L L

.80 mH

V C1
.5 V V C2

.2 V
R 1

.10 kΩ
R L

.4 Ω

I L
V CC

.2 V

R L
=I L 1.5 A

.2 V
R 2

.100 Ω
P Q2

.V C2 I L =P Q2 3 W

Q 2b) Find the β of transistor Q2 .

V R2
.5 V .0.7 V =V R2 4.3 V

I R2
V R2

R 2
=I R2 43 mA

β 2
I L

I R2
=β 2 34.884

c) Find the β of transistor Q1 .

I R1
V CC

.0.7 V

R 1
β 1

I R2

I R1
=β 1 58.9

d) Find the minimum β for transistor Q1 to be in saturation. β 1min= ?

If Q1 is saturated: V R2 V CC
.0.2 V .0.7 V =V R2 7.1 V

If Q1 is saturated: I R2
V R2

R 2
=I R2 71 mA β 1min

I R2

I R1
=β 1min 97.3

You replace Q1 with a different transistor so that now: β 1 200 Use this from now on.

e) Find the new load current (IL) assuming transistor Q2 is in the active region.

Q1 is saturated: =I R2 71 mA I L
.I R2 β 2 =I L 2.477 A

f) Check the assumption that Q2 is in the active region and recaculate IL if necessary. 

=..I R2 β 2 R L 9.907 V V CE2 V CC
..I R2 β 2 R L =V CE2 1.907 V Not possible

Q2 is saturated: I L
V CC

.0.2 V

R L
=I L 1.95 A

g) Does the diode in this circuit ever conduct a significant current?  If yes, when and how much?

When the switch opens. I Dmax = .1.95 A from part f)
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Figure 1  Op-amp symbol

vo 
 G(va	vb)

Operational Amplifiers
A. Stolp, 4/22/01

rev, 12/5/05

An operational amplifier is basically a complete high-gain voltage amplifier in a small
package.  Op-amps were originally developed to perform mathematical operations in
analog computers, hence the odd name.  They are now made using integrated circuit
technology, so they come in the typical multi-pin IC packages.  With the proper external
components, the operational amplifier can perform a wide variety of “operations” on the
input voltage.  It can multiply the input voltage by nearly any constant factor, positive or
negative, it can add the input voltage to other input voltages, and it can integrate or
differentiate the input voltage.  The respective circuits are called amplifiers, summers,
integrators, and differentiators.  Op-amps are also used to make active frequency filters,
current-to-voltage converters, voltage-to-current converters, current amplifiers, voltage
comparators, etc. etc..  These little parts are so versatile, useful, handy, and cheap that
they’re kind of like electronic Lego blocks — although somewhat drably colored.

Op-amp characteristics  
Operational amplifiers have several very important characteristics that make them so
useful:

1. An op-amp has two inputs and it amplifies the voltage
difference between those two inputs.  These two
inputs are known as the noninverting input, labeled
(+), and the inverting input, labeled (-), as shown in
Fig. 1. The output voltage is a function of the
noninverting input voltage minus the inverting input
voltage. 

That is:         Where G = voltage gain of the op-amp.

2. The op-amp must be connected to external sources of power (not shown on the
drawing above).  The output voltage (vO) cannot be more positive than the positive
power source or more negative than the negative power source.  The gain (G) is very
high, typically more than 100,000.  Together that means that if the output (vo) is in the
active range (somewhere between its physical limits, often called “rails”), then va - vb �
0, and va � vb.  This is a very important point.  If you don’t see this, look back at the
equation above, vO is limited, G is very big, so (va - vb) must be very small.

If the output is: The inputs must be:
 In active range va � vb

- rail < vO < +rail

If the inputs are: The output must be:
va > vb + rail
va < vb  - rail

3. In fact, va - vb must be so small that it’s very difficult to make va & vb close enough
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Figure 2 Voltage follower

without using some negative feedback.  Negative feedback makes the op-amp maintain
va � vb for itself.  With the proper negative feedback the op-amp keeps va � vb so close
that you can assume that va = vb.  Without this negative feedback the op-amp output will
almost certainly be at one of its limits, either high or low, i.e. NOT in its active, or linear,
range.  Incidentally, circuits without negative feedback  are also useful, but then the
output is either high or low (digital) and not linearly related to the input.  These types of
circuits are called nonlinear circuits.

4. Op-amps amplify DC as well as AC.

5. The input currents are almost zero.  In more technical  terms, the op-amp has very high
input impedance.  As long as you use reasonable resistor values in your circuits (say �
1 M6), you can neglect the input currents.

Simple, isn't it?  OK, so it doesn’t sound so simple yet, but the application of these
characteristics really isn’t hard.  Let’s look at some circuits.

Linear Circuits
Linear circuits employ negative feedback to keep va �
vb.  If a circuit has a connection from the output to the
inverting (-) input, then it has negative feedback.

Voltage follower
The voltage follower shown in Fig. 2 is probably the
simplest linear op-amp circuit.  Notice the feedback
from the output to the inverting (-) input.  If we were to
hook the circuit input (va) up to some voltage source,
say 2 volts DC, what would happen?  If the output was lower than 2 V, then the input
voltage difference (va - vb) would be positive and the huge gain of the op-amp would drive
the output higher.  If the output was higher than 2 V, then va - vb would be negative the
output would go down.  Very quickly the output voltage vo would change until va - vb

becomes very small.  Or basically, until vo = 2 V.  This is the concept of negative feedback! 
A fraction (in this case all) of the output voltage is "fed back" to the input in order to control
the gain of the op-amp.  The op-amp works very hard to maintain a very small difference
between the voltages on its inputs.  This circuit is known as a voltage follower because the
output “follows” the input.

Negative feedback is an important concept.  It is used in almost all systems, including all
natural systems.  A very simple example is the heating system in your house.  If the air
temperature is too low the thermostat detects a difference between its setting and the air
temperature and turns on the heater.  When the air temperature reaches the set
temperature the thermostat turns off the heater—negative feedback.  The servo system that
you’ve seen in lab is another example of negative feedback.  When the motor position
sensor senses a different position than the input position sensor the circuit makes the motor
turn in such a way that the difference is minimized and the positions line up.
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Figure 3 Noninverting
amplifier

vin 
 va � vb 
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Figure 4 Inverting amplifier
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Noninverting amplifier 
Now suppose we feed back only a fraction of the output
voltage rather than all of it. The method used for this is
shown in Fig. 3.  R1 and Rf constitute a voltage divider. 
Remember, the current flowing into an op-amp input is
virtually nil, so we can neglect its effect on the voltage
divider.  This is one of the very nice features of an op-amp. 
In this circuit, as in the voltage follower, the op-amp works
very hard to keep va - vb very small.  Only now vb is a
fraction of vo and the op-amp has to make vo that much
larger. 

For all practical
purposes:

Notice that by adjusting the ratio of Rf and R1, we can make the gain of the op-amp circuit
almost anything we want.  Isn't that neat?  The circuit in Fig. 3 is called a noninverting
amplifier because the output voltage is in phase with the input voltage; that is, it is not
inverted. When the input voltage increases, the output voltage will also increase and vice-
versa.  Yes, noninverting is a double negative and kind-of a dumb name.

Inverting amplifier 
Before going on, observe that I’ve swapped the
positions of the two inputs(- & +) on my op-amp
symbol.  Either way of drawing the op-amp is OK,
whatever makes the whole schematic look better. 
The noninverting input is on the bottom in this case
because it’s hooked to ground.  Draw the op-amp so
that the surrounding circuitry is clear.  

The op-amp output is still connected to the inverting
(-) input, so again we have negative feedback.  If vb > va then the output will go down, taking
vb with it, until vb � va.  If vb < va then the output will go up until vb � va.  Negative feedback
makes the op-amp do its best to equalize its inputs.  In this circuit va = 0, which means that
the op-amp will try to keep vb � 0 as well.  The current into the op-amp is zero, so iin and if
must be the same (if = iin).  Using these two ideas together:

The minus sign means that vo will be inverted with respect to vin, hence the name of this
amplifier.  When vin is positive, vo is negative, and when vin. is negative, vo is positive.  The
gain of the inverting amplifier, like that of the noninverting amplifier, is completely
dependent on our choices of Rf and Rin. 
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Figure 5 Summer

if 
 i1�i2�i3

if 
 	

vo

Rf




v1

R1

�

v2

R2

�

v3

R3

vo 
 	

Rf

R1

v1 	

Rf

R2

v2 	

Rf

R3

v3

Figure 6 Differentiator

iC 
 C
dvin

dt

 if 
 	

vo

Rf

vo 
 	CRf

dvin

dt

Figure 7 Integrator

iin 


vin

Rin


 iC 
 	C
dvo

dt

vo 
 	
1

CRin
Pvindt

Figure 8 Practical integrator

Summer
The inverting amplifier can also be used as a
summing amplifier; that is, it can be made to add
the effects of several input voltages together. 
Look at the circuit in Fig. 5. 

The summer can be expanded to any number
of inputs.  See?  This is getting easier. 

Differentiator
The differentiator looks an awful lot like the
inverting amplifier, and is analyzed in a very similar
way. 

Integr
ator
Another useful op-amp circuit is the integrator,
shown in Fig. 7.  For this circuit: 

Unfortunately, The simple integrator does have
one little practical problem.  Notice that if the input
voltage has any dc component, the output voltage
will soon try to run off to infinity.  (Actually it will
stop when the op-amp reaches one of its output
limits, either negative or positive.)  A resistor is
usually placed in parallel with the capacitor to
eliminate this rather annoying effect.  The circuit in
Fig. 8 has such a resistor.  This is a running-
average or Miller integrator. 
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va 


Rf

Rin�Rf

v2 
 vb 


Rf

Rin�Rf

(v1	vo) � vo

Rf

Rin�Rf

v2 


Rf

Rin�Rf

(v1	vo) �

Rin�Rf

Rin�Rf

vo

vo 


Rf

Rin

(v2 	 v1)

Rfv2 
 Rfv1 	 Rfvo � Rinvo � Rfvo

Rfv2 
 Rfv1 � Rinvo

Figure 9 Buffered differential amplifier

Figure 10 Differential amplifier

vo 


Rf

Rin

(v2 	 v1)

Active Filters
If you replace the resistors in the inverting and noninverting amplifiers with frequency
dependant impedances (capacitors and/or inductors), you can make all sorts of frequency
dependant circuits, including filters.  In fact, the differentiator and integrator circuits can be
thought of as filters.  

One of the main advantages of active filters is that you don’t need to use inductors.  Real
inductors are far from ideal, as you’ve no doubt observed in lab.  Real capacitors are much
closer to ideal capacitors and they’re cheaper than inductors.  Entire books are devoted to
these active filters and we won’t cover them any further here.

Differential amplifier
This circuit amplifies only the difference
between the two inputs.  In this circuit
there are two resistors labeled Rin, which
means that their values are equal.  Same
goes for the two Rf’s.

Don’t confuse the differential amplifier with the differentiator.  The differential amplifier
amplifies the difference of two inputs while the differentiator amplifies the slope of an input.

Instrumentation Amplifier
The differential amplifier isn’t really very
practical.  The current that flows into the top
input depends on the voltage applied to the
bottom input.  This may not seem that bad, but
it is.  It means that the input characteristics of
this circuit are not constant.  One way to get
around this would be to place a voltage
follower on each input, as shown here.
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Figure 11 Instrumentation amplifier

vo 
 (1�
2R2

R1

)
R4

R3

(v2 	 v1)

Figure 12 How to get more current

Now this is a perfectly good circuit.  If the two Rfs are closely matched and the two Rins are
also closely matched, then this circuit will amplify differential voltages very well and reject
common voltages (a voltage that is common to both inputs should subtract out of the
equation.  In EE terms, it has a good Common-Mode-Rejection-Ration (CMRR).

But what if you want to change the
gain?  You’d have to change two
resistors at the same time.  By adding
two more matched resistors and
variable resistor we’ll get the
instrumentation amplifier shown at
right.  The equation for this circuit is:

This is an important circuit and you will
probably see it again many times.  For
instance, if you had to amplify the
output of a wheatstone bridge of stain
gages, this would be the amp for the
job.

Op-amp with extra current amplification
Most op-amps cannot supply much current to
the load.  They are often limited to 10 or 20 mA,
about enough to light an LED, but not much
more.  That can br very limiting.  The circuit at
right shows a quick and dirty way to use two
transistors to greatly increase the load current
(at a small cost in output voltage swing).  Notice
that the feedback is taken from the output of the
transistors, so they sort-of become part of the
op-amp and the op-amp will do a pretty good
job of eliminating the “crossover” dead-zone
that occurs as one transistor turns off and the
other turn on.

This particular circuit is a simple voltage follower.  You can adapt this same current
amplification to most of the other op-amp circuits that we have discussed.  A few words of
warning, however.  The extra delay in the feedback can result in instabilities.  Try it with the
parts you intend to use before you depend on this design.  Also, if you use a low quality op-
amp (with a slow slew rate) you can get significant crossover distortion.  
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Figure 15  Schmitt trigger

Figure 13 Comparator

Figure 14 Other comparators

Nonlinear Circuits
In all cases so far, the feedback signal (voltage) has been applied to the inverting (-) input
of the op-amp. This means that  the feedback is negative.  Negative feedback tends to
reduce the difference between the va and vb voltages and make linear circuits.  Without
negative feedback the op-amp cannot minimize the difference between va and vb and the
very high sensitivity of the op-amp results in switching, or nonlinear circuits.

Comparator
Now look at Fig. 14.  This circuit will not work as a linear circuit. 
If  va > 0 the output will be as high as the op-amp can make it,
usually a volt or two below the positive power supply.  If  va < 0
the output will be as low as the op-amp can make it, usually a
volt or two above the negative power supply.  The output is no
longer linearly related to the input– it’s more like a digital signal,
high or low depending on how vin compares to ground (0 V).   
The comparator is a nonlinear circuit.

All the circuits above are also comparators.  In the first circuit, the input is again compared
to ground, but this time the output goes low when the input goes high and vise-versa.  In
the remaining circuits the input is compared not to 0 V, but to some voltage set by the
voltage divider of R1 and R2.  

Schmitt trigger
The Schmitt trigger is a variation of the simple comparator
which has hysteresis, that is, it has a toggle action.  When
the output is high, positive feedback makes the switching
level higher than it is when the output is low.  A little
positive feedback makes a comparator with better noise
immunity.  Increase the positive feedback and the Schmitt
trigger can be used in other switching applications.

Look at the Schmitt ttrigger circuit shown at right.  Notice
that va = [R1/(R1 + Rf)]vo, it depends on the output.  Lets say
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Figure 16 Other Schmitt triggers

Figure 17 Multivibrator

the output is low and the input is decreasing.  When vin < va the output goes high and
suddenly va goes a little bit higher with it.  That makes the difference between vb and va

even bigger.  To make the circuit switch again vin has to go back up beyond the original
switching level.  It has to reach the new va before the output will switch low.  In this circuit
the two switching levels are above and below ground by the same amount (unless you have
nonsymmetric power supplies).

The circuits above are variations of the Schmitt trigger.  In the first circuit, the input is again
compared to levels above and below ground, but this time the output goes high when the
input goes high and vise-versa.  In the remaining circuits the switching levels are not
symmetric about 0 V, but about some voltage set by the voltage divider of R1 and R2.  

Multivibrator (square wave generator)
The heart of the multivibrator is a Schmitt trigger with
lots of positive feedback.  Usually R2 = R3, which set the
switching levels at about ½ V+ and ½ V-.  When the
output is high the capacitor charges through R1 until it
reaches the ½ V+ switching level, the output switches
low and the capacitor discharges to zero and then
charges up (down) until it reaches the ½ V- switching
level.  That makes the output switch high and the
process repeats.

Conclusion
In all of these circuits, with either negative or positive feedback, the output voltage vo

cannot increase without bounds.  It is bounded in the positive direction by V+, the op-amp
positive power supply voltage, and is bounded in the negative direction by V-, the op-amp
negative supply voltage.  If the output voltage is within these bounds, va – vb must be very
small.  If va – vb were not very small, vo would soon be forced to one of its limits.  Linear
circuits use negative feedback to keep this difference small.  Without negative feedback
you can reasonably assume that the circuit is some kind of switching circuit and that the
output is always at one or the other of its limits.

This only scratches the surface of what you can do with op-amps.  Get a copy of The Op-
amp Cookbook for lots more ideas presented in a no-nonsense way. 
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ECE 2210 Introduction to AC Power, RMS
RMS AC Power

I DC Power
P = ?

P = .V I =
V2

R
= .I2 R

v( )t = .V p cos( ).ω t R
V

R

v( )t
V p

t

p( )t

V p
2

R

Couldn't we define an "effective" voltage that 
would allow us to use the same relationships 
for AC power as used for DC power?

average or 
"effective" 
power =

V p
2

R

2
t

P ave = = =

V p
2

R

2

V p
2

2

R

V p

2

2

R v( )t 2

V p
2

Square
/

V eff =
V p

2

2

=
V p

2

= V rms = .1

T
d

0

T
t( )v( )t 2

average =
V p

2

2 | \
Mean (average)

Root

tRMS Root of the Mean of the Square

Use RMS in power calculations 

Sinusoids

V rms = .1

T
d

0

T
t( )v( )t 2 = .1

T
d

0

T
t.V p cos( ).ω t

2
= .1

T
d

0

T

t.V p
2 1

2
.1

2
cos( )..2 ω t

= .
V p

2

.1

T
d

0

T
t( )1 .1

T
d

0

T
tcos( )..2 ω t = .

V p

2

1 0
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Common household power ECE 2210   AC  Power  p2
f = .60 Hz Neutral, N Line, L

black, 120V
V rms

.120 V
white

ω = .377
rad

sec
(also ground)

Vp = =.V rms 2 170 V
T = .16.67 ms

Ground, G, green

What about other wave shapes??

v( )t Triangular v( )t Square
V p V p

t
t

v( )t 2

V p
2 v( )t 2

V p
2 average = V p

2

average =
V p

2

3

t
t

V rms=
V p

3
V rms= V p

Works for all types of triangular and sawtooth waveforms Same for DC

v( )tHow about AC + DC ?
 .
/|\
Vp
\|/

V rms = .1

T
d

0

T
t( )v( )t 2

V DC

t

= .1

T
d

0

T
t.V p cos( ).ω t V DC

2

= .1

T
d

0

T
t.V p cos( ).ω t

2 ..2 .V p cos( ).ω t V DC V DC
2

= .1

T
d

0

T
t.V p cos( ).ω t

2 .1

T
d

0

T
t..2 .V p cos( ).ω t V DC

.1

T
d

0

T
tV DC

2

 - - - zero over one period - - -

= V rmsAC
2 0 V DC

2 = V rmsAC
2 V DC

2
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rectified average V ra= .1

T
d

0

T
tv( )t

sinusoid: V rms =
V p

2

I rms =
I p

2
V ra = .2

π
V p I ra = .2

π
I p

triangular: V rms =
V p

3

I rms =
I p

3
V ra = .1

2
V p I ra = .1

2
I p

square: V rms = V p I rms = I p V ra= V rms = V p I ra = I rms = I p

Most AC meters don't measure true RMS. 
Instead, they measure Vra , display 1.11Vra , 
and call it RMS.  That works for sine waves 
but not for any other waveform.

waveform + DC V rms = V rmsAC
2 V DC

2

Some waveforms don't fall into these forms, then you have to perform the math from scratch

0 1 2 3 4 5 6 7 8 9 10 11 12

6

4

2

2

4For waveform shown   v(t)
(volts)

The average DC (VDC) value

=
..2 V ( ).4 ms .( ).5 V ( ).2 ms

.6 ms
0.333 V time

(ms)

The RMS (effective) value

0 1 2 3 4 5 6 7 8 9 10 11 12

5

5

10

15

20

25  v(t)2

(volts2)
Graphical way

=
..4 V2 ( ).4 ms ..25 V2 ( ).2 ms

.6 ms
11 V2

V RMS
.11 V2 =V RMS 3.32 V time

(ms)

OR...

V RMS = .1

T
d

0

T
t( )v( )t 2

= .1
.6 ms

d
.0 ms

.4 ms
t( ).2 V 2 d

.2 ms

.6 ms
t( ).5 V 2 = =.1

.6 ms
..4 ms ( ).2 V 2 ..2 ms ( ).5 V 2 3.32 V

The voltage is hooked to a resistor, as shown, for 6 seconds.

The energy is transfered to the resistor during that 6 seconds:
R L

.50 Ω

P L
V RMS

2

R L
=P L 0.22 W

W L
..P L 6 sec =W L 1.32 joule All converted to heat
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Use RMS in power calculations ECE 2210   AC  Power  p4

P = .I Rrms
2 R =

V Rrms
2

R
for Resistors ONLY ! !

Capacitors and Inductors

+
i C

i L v L+
v C
- -

v C( )t v L( )t
i C( )t

t t

i L( )t

p( )t p( )t

t t

Average power is ZERO P = 0 Average power is ZERO P = 0

Capacitors and Inductors DO NOT dissipate (real) average power. 

Reactive power is negative Reactive power is positive

Q C = .I Crms V Crms Q L = .I Lrms V Lrms

= .I Crms
2 1

.ω C
= ..V Crms

2 ω C = ..I Lrms
2 ω L =

V Lrms
2

.ω L

If current and voltage are not in phase, only the in-phase part of the current matters for the power-- DOT PRODUCT

V

I.I cos( )θ

I .I cos( )θ

"Leading" Power

"Lagging" power
Capacitor dominates

Inductor dominates
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P = .I Rrms
2 R =

V Rrms
2

R
for resistors

other wise....

P = ..V rms I rms cos( )θ = ..I rms
2 Z cos( )θ = .

V rms
2

Z
cos( )θ units: watts, kW, MW, etc.

P = "Real" Power (average) = ..V rms I rms pf = ..I rms
2 Z pf = .

V rms
2

Z
pf

Reactive Power

capacitors -> - Q Q C = .I Crms
2 X C =

V Crms
2

X C
X C=

1
.ω C

and is a negative number

inductors -> + Q Q L = .I Lrms
2 X L =

V Lrms
2

X L
X L = .ω L and is a positive number

other wise....

Q = Reactive "power" = ..V rms I rms sin( )θ units: VAR, kVAR, etc. "volt-amp-reactive"

Complex and Apparent Power
complex congugate

 /

S = Complex "power" = .V rms I rms = P jQ = VrmsIrms /θ units: VA, kVA, etc. "volt-amp"

NOT .I rms
2 Z NOR

V rms
2

Z

S = Apparent "power" = S = .V rms I rms = P2 Q2 units: VA, kVA, etc. "volt-amp"

Power factor

pf = cos( )θ =  power factor (sometimes expressed in %) 0 < pf < 1

θ is the phase angle between the voltage and the current or the phase angle of the impedance. θ = θ Z

θ < 0 Load is "Capacitive",  power factor is "leading".  This condition is very rare

θ > 0 Load is "Inductive",  power factor is "lagging".  This condition is so common you can assume any power 
factor given is lagging unless specified otherwise.  Transformers and motors make most loads inductive.

Industrial users are charged for the reactive power that they use, so power factor < 1 is a bad thing.

Power factor < 1 is also bad for the power company.  To deliver the same power to the load, they have more 
line current (and thus more line losses).

Power factors are "corrected" by adding capacitors (or capacitve loads) in parallel with the inductive loads which 
cause the problems.  (In the rare case that the load is capacitive, the pf would be corrected by an inductor.)

S (VA) P (W)

Q (VAR)

Q (VAR)

P (W)
"Lagging" power

S (VA)
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Transformer basics and ratings ECE 2210   AC  Power  p6
A Transformer is two coils of wire that are magnetically coupled.

Transformers are only useful for AC, which is one of the big reasons electrical power is generated and distributed as AC.  

Transformer turns and turns ratios are rarely given, Vp/Vs is much more common where Vp/Vs is the rated primary over 
rated secondary voltages.  You may take this to be the same as N1/N2 although in reality N2 is usually a little bit 
bigger to make up for losses.  Also common: Vp : Vs.

Both RMS

Transformers are rated in VA Transformer Rating (VA)  =  (rated V) x (rated I) ,  on either side.

Don't allow voltages over the rated V , regardless of the actual current. 
Don't allow currents over the rated I , regardless of the actual voltage.

Ideal Transformers
Iron-core transformer

primary secondary

I 1 I 2

rare

V 1 V 2 Z L

N 2
N 1

Ideal: P 1 = P 2

power in = power out
(Ryff, Fig.7.2)

Transformation of voltage and current common
N 1

N 2
=

V 1

V 2
=

I 2

I 1

Turns ratio
Note: some other texts 
define the turns ratio as:

Turns ratio as defined in Chapman text: a =
N 1

N 2
, same as N =

N 1

N 2

N 2

N 1
Be careful how you and others use this term

Transformation of impedance I 2I 1

Z 2V 1 V 2

I 1

You can replace the entire transformer 
and load with (Zeq).  This "impedance 
transformation" can be very handy. V 1 Z eq Z eq = .N2 Z 2 = .

N 1

N 2

2

Z 2

Transformers can be used for "impedance matching"

This also works the opposite way, to move an impedance from the primary to the secondary, multiply by:
N 2

N 1

2
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Other Transformers ECE 2210   AC  Power  p7
Multi-tap transformers: Many transformers have more than two connections to primary and/or the secondary.  

The extra connections are called "taps" and may allow you to select from several 
different voltages or get more than one voltage at the same time. 

Isolation Transformers: Allmost all transformers isolate the primary from the secondary.  
An Isolation transformer has a 1:1 turns ratio and is just for isolation. 

Auto Transformers: Auto transformers have only one winding with taps for various voltages.  The primary and 
secondary are simply parts of the same winding.  These parts may overlap.  Any regular 
transformer can be wired as an auto transformer.    Auto transformers DO NOT provide isolation. 

Vari-AC: A special form of auto transformer with an adjustable tap for an adjustable output voltage.

LVDT A Linear-Variable-Differential-Transformers has moveable core which couples the primary 
winding to the secondary winding(s) in such a way the the secondary voltage is proportional 
to the position of the core.  LVDTs are used as position sensors.

Home power

Standard 120 V outlet connections are shown at right.
Neutral, N Line, L

black, 120VThe 3 lines coming into your house are NOT 3-phase.
They are +120 V, Gnd, -120 V

(The two 120s are 180o out-of-phase, allowing for 240 V connections)  

white
(also ground)

Ground, G, green

3-Phase Power (FYI ONLY)

Single phase power pulses at 120 Hz.  This is 
not good for motors or generators over 5 hp.

Three phase power is constant as long 
as the three loads are balanced.

Three lines are needed to transmit 3-phase power.
If loads are balanced, ground return current will be zero.

Wye connection:  
 Connect each load or generator phase
 between a line and ground.

Delta connection:  
 Connect each load or generator phase
 between two lines.

Wye Delta

V LN=
V LL

3

I L = .3 I LL V LL = .3 V LN I LL =
I L

3
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ECE 2210   AC  Power  p83-Phase Power (FYI ONLY)
.120 V .277 V

.120 V .277 V
Common 3-phase voltages: 208 3φ 480 3φ

.120 V .277 V

Apparent Power: S 3φ = ..3 V LN I L = ..3 V LL I LL = ..3 V LL I L

Power: P 3φ = ...3 V LN I L pf = ...3 V LL I LL pf = ...3 V LL I L pf = .S 3φ pf pf = cos( )θ

Reactive power: Q 3φ = ...3 V LN I L sin( )θ etc... = S 3φ
2 P 3φ

2

I a = IL /α 
A

V AB= VLL / 30ο
V an = VLN /0ο

I b= IL /α -120ο 

B

V bn = VLN /-120ο V CA= VLL /-210ο = VLL / 150ο V BA= VLL /-90ο 
I c = IL /α -240o = IL /α +120ο 

C

V cn = VLN /-240ο = VLN / 120ο 

N
neutral   (ground at some point)

lower-case letters 
at source end

upper-case letters 
at load end

 IA  IAA A

 VAN  VCA IB  VABB  VAN IAB ICAIBC IB
 VBN B

0, if balanced load

 ICN  VBC VBN C
 VBN

 VCN ICC neutral is not connected at the load
N

V AN = V BN = V CN = V LN =
V LL

3

V AB = V BC = V CA = V LL = .3 V LN

I A = I B = I C = I L = .3 I LL I AB = I BC = I CA = I LL =
I L

3
To get equivalent line currents with equivalent voltages

Z ∆∆∆∆ = .3 Z yZ Y =
Z ∆∆∆∆
3
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ECE 2210 AC Power Examples
Ex. 1 R & L together are the load.  Find the real power P, the reactive power Q, the complex power S, 

the apparent power |S|, & the power factor pf.  Draw phasor diagram for the power.

V in .110 V R .10 Ω L .25 mH Z 1

1

R

1
..j ω L

=
1

..0.1458
1

Ω
e

..j 46.7 deg
ω .377

rad

sec load

=Z 4.704 +4.991j Ω =Z 6.859 Ω θ arg( )Z =θ 46.7 deg pf cos( )θ =pf 0.686

I
V in

Z
=I 11 11.671j A =I 16.038 A =arg( )I 46.7 deg

P ..V in I pf =P 1.21 kW

Q ..V in I sin( )θ =Q 1.284 kVAR OR... Q ..V in I 12 pf2 =Q 1.284 kVAR

S .V in I OR.. S P .j Q =S 1.21 +1.284j kVA S Re( )S 2 Im( )S 2 = =S 1.764 kVA

=atan
Im( )S
Re( )S

46.696 deg

S = 1.764kVA /46.7o OR, since we know that the voltage across each element of the load is Vin ...
Real power is dissipated only by resistors

P
V in

2

R
=P 1.21 kW Q

V in
2

.ω L
=Q 1.284 kVAR

S P .j Q

S = S = =P2 Q2 1.764 kVA pf = =
P

S
0.686

What value of C in parallel with R &  L would make pf = 1  (Q = 0) ?

=Im( )I 11.671 A X C
V in
Im( )I

=X C 9.425 Ω =
1
.ω C

=
1

.X C ω
281 µF OR.. ω =

1

.L C
C

1

.L ω2
=C 281 µF

Ex. 2 R & L together are the load.  Find the real power P, the reactive power Q, the complex power S, 
the apparent power |S|, & the power factor pf.  Draw phasor diagram for the power.

Series R & L
R .10 Ω Z R ..j ω L

V in .110 V
load =Z 10 +9.425j Ω =Z 13.742 Ω

ω .377
rad

sec L .25 mH θ arg( )Z =θ 43.304 deg pf cos( )θ =pf 0.728

I
V in

Z
=I 5.825 5.49j A

=I 8.005 A =arg( )I 43.304 deg

P ..V in I pf =P 0.641 kW

Q ..V in I sin( )θ =Q 0.604 kVAR

S .V in I =S 0.641 +0.604j kVA

=S 0.881 kVA =arg( )S 43.304 deg S = 881VA/43.3o 
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OR, if we first find the magnitude of the current which flows through each element of the load...

I = =
V in

R2 ( ).ω L
2

8.005 A

P .( )I 2 R =P 0.641 kW Q .( )I 2 ( ).ω L =Q 0.604 kVAR

S P .j Q S = =P2 Q2 0.881 kVA pf = =
P

S
0.728

What value of C in parallel with R & L would make pf = 1  (Q = 0) ?

=Q 603.9 VAR so we need: Q C Q =Q C 603.9 VAR =
V in

2

X C

X C
V in

2

Q C
=X C 20.035 Ω =

1
.ω C

C
1

.X C ω
=C 132 µF

Check: =
1

1

R ..j ω L
..j ω C

18.883 Ω No j term, so  θ = 0o 

Ex. 3 R, & C together are the load in the circuit shown.  
The RMS voltmeter measures 240 V, the RMS 
ammeter measures 3 A, and the wattmeter 
measures 600 W.  Find the following:  Be sure 
to show the correct units for each value.

P .600 W
load

R LV s
.240 V

RMS
C L

a) The value of the load resistor.  RL = ? f .60 Hz I .3 A

P = .I2 R L
RMS

R L
P

I2
=R L 66.7 Ω

b) The apparent power.  |S| = ? S .V s I =S 720 VA

c) The reactive power. Q = ? Q S2 P2 =Q 398 VAR

d) The complex power.  S = ? S P .j Q =S 600 398i VA

e) The power factor.  pf = ? pf
P

.V s I
=pf 0.833

f) The power factor is  leading  or  lagging? leading  (load is capacitive, Q is negative)

g) The two components of the load are in a box which cannot be opened.  Add (draw it) another component 
to the circuit above which can correct the power factor (make pf = 1).  Show the correct component in the 
correct place and find its value.  This component should not affect the real power consumption of the load.

=f 60 Hz ω .377
rad

secAdd an inductor in parallel with load

=Q 398 VAR so we need: Q L Q =Q L 398 VAR =
V s

2

X L

X L
V s

2

Q L
=X L 144.725 Ω = .ω L L

X L

ω
=L 384 mH
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Ex. 4 For the 60 Hz load shown in the figure, the RMS 
voltmeter measures 120 V.  The phasor diagram for 
the power is also shown.  Find the following:
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V s

.120 V

a) The complex power.  S = ? ω .377
rad

sec
P .300 W Q .150 VA

S P .j Q =S 300 150j VA

b) The apparent power.  |S| = ? S = =P2 Q2 335.4 VA

c) The power factor.  pf = ? pf
P

S
=pf 0.894

d) The item marked "WM" in the figure is a wattmeter, 
what does it read? (give a number) =P 300 W

e) The item marked "A" in the figure is an RMS ammeter, 
what does it read? (give a number) 

I S
V s

=I 2.795 A =I 2.8 A

f) The power factor is  leading  or  lagging? leading  (Q is negative)

g) The 3 components of the load are in a box which cannot be opened.  Add another component to the circuit 
above which can correct the power factor (make pf = 1).  Show the correct component in the correct place 
and find its value.  This component should not affect the real power consumption of the load.

Add an inductor in parallel with load

=Q 150 VAR need: Q L Q =Q L 150 VAR =
V s

2

.ω L
L

V s
2

.ω Q L
=L 255 mH

Ex. 5 R, L, & C together are the load in the circuit shown .270 W
loadThe RMS voltmeter measures 120 V. V s

.120 V

The wattmeter measures 270 W. P .270 W
X LThe RMS ammeter measures 3.75 A. I .3.75 A

.120 V R L

Find the following:  Be sure to show 
the correct units for each value.

.3.75 A
f .60 Hz .10j Ω

a) The value of the load resistor.  RL = ?

P =
V s

2

R L
R L

V s
2

P
=R L 53.3 Ω

b) The magnitude of the impedance of the load inductor (reactance) .  |ZL| = XL = ?

I R
V s

R L
=I R 2.25 A I L I2 I R

2 =I L 3 A X
V s

I L
=X 40 Ω

X C
.10 Ω X L X X C =X L 50 Ω

c) The reactive power. Q = ? Q .V s I 2 P2 =Q 360 VAR positive, because the load 
is primarily inductive

d) The power factor is  leading  or  lagging? lagging  (load is inductive, Q is positive)
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e) The 3 components of the load are in a box which cannot be opened.  Add another component to the circuit 
above which can correct the power factor (make pf = 1).  Show the correct component in the correct place 
and find its value.  This component should not affect the real power consumption of the load.

=f 60 Hz ω .377
rad

secAdd a capacitor in parallel with load

=Q 360 VAR so we need: Q C Q =Q C 360 VAR =
V s

2

1
.ω C

= ..ω C V s
2

C
Q C

.ω V s
2 =C 66.3 µF

Ex. 6 A step-down transformer has an output voltage of 220 V (rms) when the primary is connected 
across a 560 V (rms) source.  

a) If there are 280 turns on the primary winding, how 
many turns are required on the secondary?  

=.280
.220 volt
.560 volt

110 turns

b) If the current in the primary is 2.4 A, what current flows in the 
load connected to the secondary?

=..2.4 amp
280

110
6.11 A

c) If the transformer is rated at 700/275 V, 2.1 kVA, 
what are the rated primary and secondary currents? pri: =

.2.1 kVA
.700 V

3 A sec: =
.2.1 kVA

.275 V
7.636 A

Ex. 7 The transformer shown in the circuit below 
is ideal.  Find the following: R 1

.20 Ω R 2
.15 Ω

a) |I1| = ? V s
.120 V C .40 µF

ω .377
rad

sec

N 1
.150 turns N 2

.50 turns
Z L

1

1

R 2

..j ω C

Make an 
equivalent circuit:

R 1
.20 Ω =Z L 14.27 3.228j Ω

Z eq .
N 1

N 2

2

Z L =Z eq 128.429 29.051j Ω

=R 1 Z eq 148.429 29.051j Ω =148.4292 29.0512 151.245

I 1 =
V s

R 1 Z eq
= =

V s
.151.245 Ω

0.793 A

b) |I2| = ? = .
N 1

N 2
I 1 = =..150

50
.793 A 2.379 A

c) |V1| = ? = .V s
Z eq

R 1 Z eq
OR.. V 1 = .I 1 Z eq = =....793 A 128.4292 29.0512 Ω 104.417 V
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