
ECE 2100 homework # 18 Due: Fri, 3/28/03

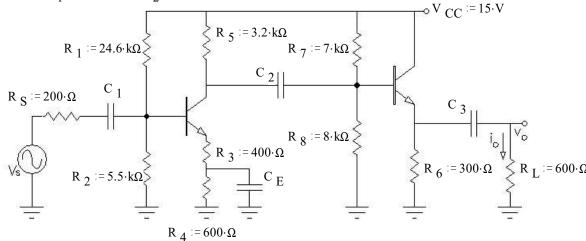
A.Stolp 4/12/02 3/13/03

1. Consider the circuit below. You may neglect the base bias current $\binom{r}{R}$ and the Early effect $\binom{r}{n}$.

a) When the switch is open, the peak-to-peak output signal voltage at the collector is 4 Vpp. When the switch is closed this voltage drops to 2.88 Vpp. What is the output resistance of this amplifier?

no load collector signal: $v_{c,n1} := 4 \cdot V$ loaded collector signal: $v_{c,1} := 2.88 \cdot V$

- b) What is the value of R_C?
- c) What is the peak-to-peak voltage at the base? $v_b = ?$


- d) The input resistance (R_{in}) has been measured as 452 Ω . What is the peak-to-peak voltage at the source?
- e) The input resistance (R_{in}) has been measured as 452 Ω . Find β . R $_i$ = 452 Ω β = ?

f) When the switch is closed, what is the maximum peak-to-peak output voltage you can get from this amplifier without clipping? V oppmax = ?

homework # 18 p.2 ECE 2100

2. Consider the circuit below. You may neglect the base bias currents ($^{\iota}_{B}$) and the Early effects ($^{\iota}_{c}$).

Assume that $\beta_1 := 112$ and $\beta_2 := 112$

- a) What is the output resistance of the first stage?
- $R_{01} = ?$
- b) What is the output resistance of the second stage? R_{o2} = ? You may neglect r_e for this stage

- c) What is the approximate voltage gain of the second stage? A $_{v2}$ = ? You may neglect $r_{\rm e}$ for this stage
- d) This amplifier should have a low corner frequency of 40 Hz. What is the minimum allowable value of G? $f_{CL} = 40 \cdot Hz$ C $_3$ = ? You may neglect r_e for the second stage

Answers

- 1a) R $_{0}$:= 389· Ω b) R $_{C}$:= 389· Ω c) v_{b} := 195·mV d) v_{s} := 282·mV e) β := 120

- f) $V_{oppmax} := 13.3 \cdot V$
- 2a) R $_{o1}$:= 3.2·k Ω b) R $_{o2}$:= 14.6· Ω c) A $_{v2}$ = 1 d) C $_{3}$:= 6.47· μF