R_E = $100 \cdot \Omega$

Common Collector

- 1. Find the following, do not neglect '_B.
 - a) The Thevenin equivalent of the base bias circuit

$$V_{BB} = ?$$

$$R_{BB} = ?$$

b)
$$I_{B} = ?$$

$$I_C = ?$$

Small signal characteristics

You may assume that the coupling capacitors are adequately sized, meaning that you can neglect them in your small signal calculations.

- c) $r_e = ?$ don't neglect r_e in the following calculations
- d) Input resistance, R_{in}, include R_L in this calculation
- e) Output resistance, R_o, include R_s in this calculation

2

 $R_B = 120 \cdot k\Omega$

Common Collector Bias (The circuits in the following problems were designed for good bias at β = 150)

2. at
$$\beta$$
 = 150, I_B = 69 μ A, I_C = 10.3 mA, V_C = 5.9 V,

- a) Calculate I_B , I_C , and V_C for $\beta = 100$
- b) Calculate I_B , I_C , and V_C for β = 400. Check V_{CE} to make sure the transistor is not in saturation. Recalculate $_{B}^{I}$, I_{C} , and V_{C} if it is.

- 3. at β = 150, I_B = 68.4 μ A, I_C = 10.3 mA, V_C = 5.9 V
 - a) Calculate I_B , I_C , and V_C for β = 100
 - b) Calculate I_B , I_C , and V_C for β = 400. Check V_{CE} to make sure the transistor is not in saturation. Recalculate $_{B}^{I}$, I_{C} , and V_{C} if it is.

- 4. at β = 150, I_B = 74 μ A, I_C = 11 mA, V_C = 5.6 V
 - a) Calculate I_B , I_C , and V_C for β = 100
 - b) Calculate I_B , I_C , and V_C for β = 400. Check V_{CE} to make sure the transistor is not in saturation. Recalculate $_{B}^{I}$, I_{C} , and V_{C} if it is.

_Answers

- 1.a) 4.62 V 9.23 k Ω b) $79 \,\mu\text{A}$ 11.8 mA
- c) 2.12Ω
- d) $5.07 \text{ k}\Omega$
- e) 27.6Ω

- 2. a) at β = 100, I_B = 71.5 μ A, I_C = 7.15 mA, V_C = 7.14 V
- b) at β = 400, I_B = 61.2 μ A, I_C = 19.6 mA, V_C = 2.16 V
- 3. a) at β = 100, I_B = 73.7 μ A, I_C = 7.37 mA, V_C = 7.05 V
- b) at β = 400, I_B = 51.2 μ A, I_C = 19.6 mA, V_C = 2.16 V
- 4. a) at β = 100, I_B = 89 μ A, I_C = 8.9 mA, V_C = 6.45 V
- b) at β = 400, I_B = 40 μ A, I_C = 16 mA, V_C = 3.6 V