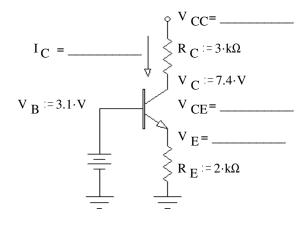
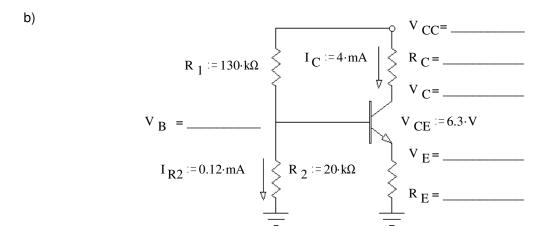
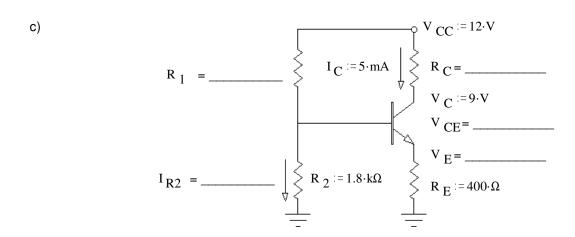
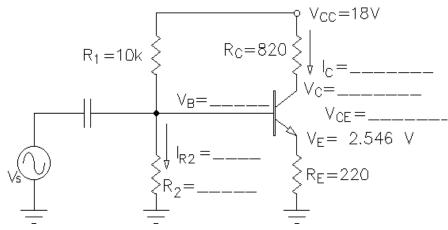
Microelectronic Circuits, 4th Ed. Ch. 4 prob. 4.2 (ans: β = 368,122,24.2), Ex. 4.1 - 4.7


Assume thermal voltage: $V_T = 25 \text{mV}$


Note for Fig. 4.8: i_B should flow out of transistor.


ECE 2100 homework # 16 Due: Fri, 3/14/03 Name:


On separate paper, do: Microelectronic Circuits, 4th Ed. Ch. 4 Ex. 4.8 - 4.9, prob. 4.21, 4.22 (ans: 28k, 28.3k)

1. Fill in the blanks in the circuit below. You may neglect the base bias current $(I_{\rm B})$. a)

Note: You'll probably want to add a sheet of paper in order to work out the rest of this problem.

- b) Is the transistor operating in the active region? Show your evidence. Yes No
- c) If β = 150, how big is that I_B that we neglected?
- d) Compare this value to I_{R2} . Was it reasonable to neglect I_{R2} ? (is I_{R3} < 10% of I_{R2})
- e) If we actually built this circuit, what effect would the actual I_B have on I_C ? That is would I_C be lower, higher or the same as you found earlier? Hint: would V_B be higher or lower? Would V_E be higher or lower? Would I_E be higher or lower? IC would be: lower higher same (circle one)
- f) Considering only I_C and V_{CF}, how much power does this transistor dissipate or contribute?
- g) Does it dissipate or contribute power? dissipate contribute (circle one)
- h) If the v_s signal were applied at the base, an AC signal would also appear at the collector. How much larger would it be. (Voltage gain).

Answers

- 2. a) $I_E := 11.57 \cdot mA$ $V_C := 8.51 \cdot V$ $V_{CE} := 5.96 \cdot V$ $V_B := 3.246 \cdot V$ $I_{R2} := 1.475 \cdot mA$ $R_2 := 2.2 \cdot k\Omega$
 - b) Yes, $V_{CE} > 0.2V$ c) $I_B := 0.077 \cdot mA$ d) OK to neglect e) lower f) $69 \cdot mW$ g) dissipate h) 3.73

ECE 2100 homework # 16, p2