ECE 2100 Lecture Notes 4/16/03

Stuff Review for Final: Fri, 4/25 3:30 pm Final: Mon, 4/28 8:00 am

HW # 22, due: W 4/16 Ex5.9 - Ex5.16

Check assumptions, esp saturation on 15 & 16

Spice #S3, due: F, 4/18 handout

HW # 23, due: F 4/18 Ex5.17 - Ex5.23

HW # 24, due: M 4/21 Ex5.24 - Ex5.34

Ex 5.28 Ans: ...128k Ω , 192k Ω ,...

May need for Ex5.33: V_{DD} = 5V, V_{tn} = 0.8V

HW # 25, due: W 4/23 Ex5.35 - Ex5.39

HW # 26, due: W 4/23 Ex5.40 - Ex5.48

Current mirrors, continued

We have an equation to solve for I_D if $V_{GS} = V_{G} - R_{S} \cdot I_D$ but now...

To find I_{REF}, notice: V_{GS} = V_{DD} - R_{D} · I $_{D1}$ adapt previous eq:

$$0 = R_{D}^{2} \cdot I_{D1}^{2} - 2 \cdot \left[(V_{DD} - V_{t}) \cdot R_{D} + \frac{1}{k'_{n} \cdot \frac{W}{L}} \right] \cdot I_{D1} + (V_{DD} - V_{t})^{2}$$
a
$$V = \frac{1}{k'_{n} \cdot \frac{W}{L}} \cdot I_{D1} + (V_{DD} - V_{t})^{2}$$

$$I_{D1}$$
= $\frac{-b + \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$ or I_{D1} = $\frac{-b - \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$ = I_{REF}

REF VGS VGS

A. Stolp

4/15/03,

4/17/03

Only one of which will make sense. $(V_{GS} > V_t)$.

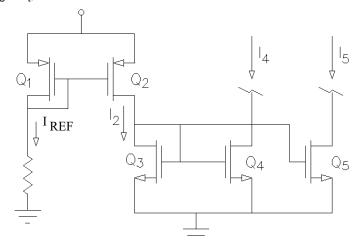
One current source could be the reference for another current source...

Each Mosfet can have a different W/L

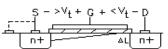
$$\frac{I_2}{I_{REF}} = \frac{W_2}{L_2} \cdot \frac{L_1}{W_1} \quad \text{if all have same k'}_n$$

$$\frac{I_4}{I_{REF}} = \frac{W_4}{L_4} \cdot \frac{L_3}{W_3} \cdot \left(\frac{W_2}{L_2} \cdot \frac{L_1}{W_1}\right)$$

$$\frac{I_5}{I_{REF}} = \frac{W_5}{L_5} \cdot \frac{L_3}{W_3} \cdot \left(\frac{W_2}{L_2} \cdot \frac{L_1}{W_1}\right)$$

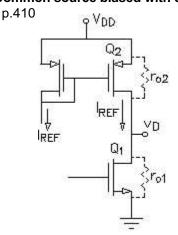


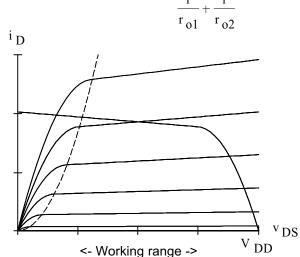
Want current to be independent of voltage, r_o should be very large, so:

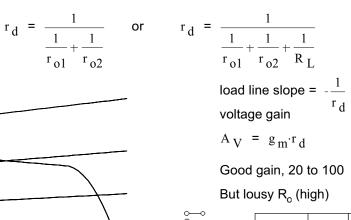


Make channel length long

Common source biased with current mirror



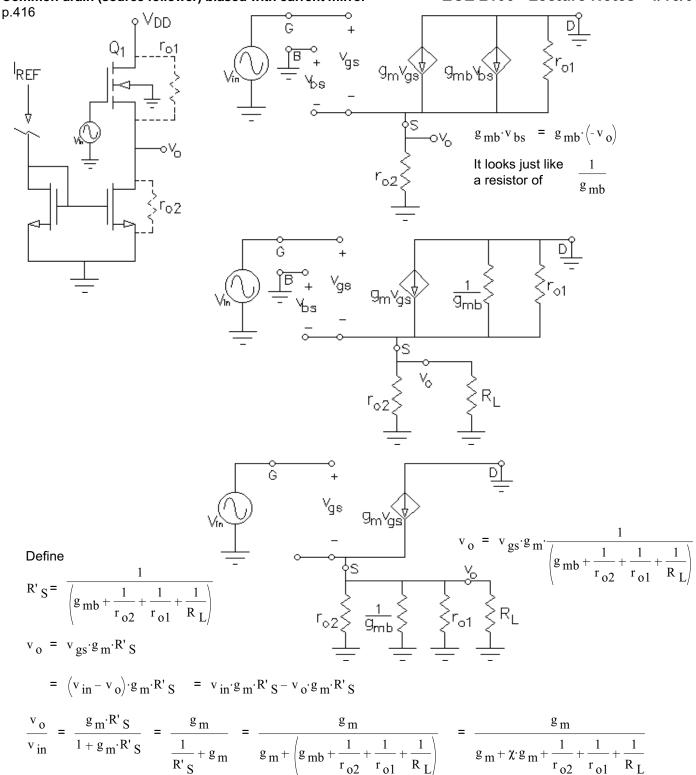




ECE 2100 Lecture Notes 4/16/03 p1

Common drain (source follower) biased with current mirror

ECE 2100 Lecture Notes 4/16/03 p2



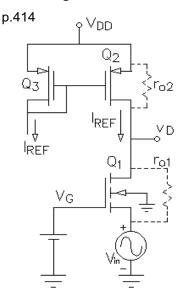
To find R_o , zero v_{in} , then you'll notice that $v_{gs} = v_{bs}$, so by the same type of analysis used on g_{mb} , $1/g_m$ just looks like another resistor in parallel with $1/g_{mb}$.

$$R_{o} = \frac{1}{\left(g_{m} + g_{mb} + \frac{1}{r_{o2}} + \frac{1}{r_{o1}}\right)}$$
often neglected /___/

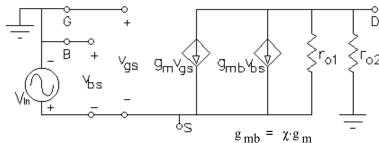
The input is into the gate, so: $R_{in} = \infty$ At low enough frequencies that the input capacitance isn't a problem.

Common gate biased with current mirror

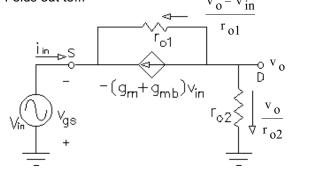
ECE 2100 Lecture Notes 4/16/03 p3



Source is the signal input, so let's assume the body is hooked to ground. Gate is at signal ground, so..



Folds out to...



KCL at D:
$$(g_m + g_{mb}) \cdot v_{in} = \frac{(v_0 - v_{in})}{r_{o1}} + \frac{v_0}{r_{o2}} = \frac{v_0}{r_{o1}} - \frac{v_{in}}{r_{o1}} + \frac{v_0}{r_{o2}}$$

Good gain, 20 to 100

But lousy R_{in} & R_o

Like common base amp, has no Miller effect, so is good at high frequencies.

Is usually part of a two part amplifier, like a cascode or differential

(CL at D:
$$(g_m + g_{mb}) \cdot v_{in} = \frac{(\sigma - m)}{r_{o1}} + \frac{\sigma}{r_{o2}} = \frac{\sigma}{r_{o1}} - \frac{m}{r_{o1}} + \frac{\sigma}{r_{o2}}$$
 cascode of σ amp
$$\left(g_m + g_{mb} + \frac{1}{r_{o1}}\right) \cdot v_{in} = v_o \cdot \left(\frac{1}{r_{o1}} + \frac{1}{r_{o2}} + \frac{1}{R_L}\right)$$
 adding a term for a possible R_L

$$A_V = \frac{v_o}{v_{in}} = \left(\frac{g_m + g_{mb} + \frac{1}{r_{o1}}}{r_{o1}}\right) \cdot \frac{1}{r_{o1}} + \frac{1}{r_{o2}} + \frac{1}{R_L}$$
 often neglected $\frac{1}{r_{o1}} + \frac{1}{r_{o2}} + \frac{1}{R_L}$

R_{in}, p.415 derivation below is not required

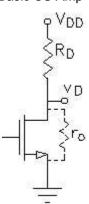
$$\begin{split} &i_{in} = \ \left(g_{m} + g_{mb}\right) \cdot v_{in} + \frac{\left(v_{in} - v_{o}\right)}{r_{o1}} &= \ \left(g_{m} + g_{mb}\right) \cdot v_{in} + \frac{v_{in}}{r_{o1}} - \frac{v_{o}}{r_{o1}} &= \ \left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot v_{in} - \frac{v_{o}}{r_{o1}} \\ &= \ \left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot v_{in} - \frac{A_{v}v_{in}}{r_{o1}} &= \left[\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) - \frac{A_{v}}{r_{o1}}\right] \cdot v_{in} \\ &= \left[\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot v_{in} - \frac{A_{v}v_{in}}{r_{o1}} - \frac{1}{r_{o1}} + \frac{1}{r_{o1}} \cdot v_{in}\right] \cdot v_{in} \\ &= \left[\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 - \frac{1}{r_{o1}} + \frac{1}{r_{o1}}\right) \cdot \left(1 - \frac{1}{r_{o1}} + \frac{1}{r_{o1}}\right) \cdot v_{in}\right] \cdot v_{in} \\ &= \left[\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 - \frac{1}{r_{o2}} + \frac{1}{r_{o1}}\right) \cdot v_{in}\right] \\ &= \left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 - \frac{1}{r_{o2}} + \frac{1}{r_{o1}}\right) \cdot v_{in}\right] \\ &= \frac{1}{\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 + \left(\frac{1}{r_{o2}} + \frac{1}{r_{o1}}\right) \cdot r_{o1} - 1\right)} \\ &= \frac{1}{\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 + \left(\frac{1}{r_{o2}} + \frac{1}{r_{o1}}\right) \cdot r_{o1} - 1\right)} \\ &= \frac{1}{\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 + \left(\frac{1}{r_{o2}} + \frac{1}{r_{o1}}\right) \cdot r_{o1} - 1\right)} \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right)} \\ &= \frac{1}{\left(g_{m} + g_{mb} + \frac{1}{r_{o1}}\right) \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right)} \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right) \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right)} \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right) \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right)} \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} - 1\right) \cdot \left(1 - \frac{1}{r_{o2}} \cdot r_{o1} -$$

ECE 2100 Lecture Notes 4/16/03 p3

often neglected '

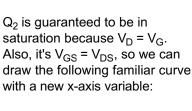
p.419

Basic CS Amp

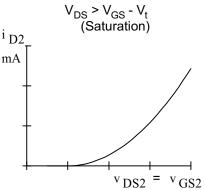


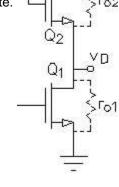
Last time we replaced the $R_{\rm D}$ with a current source made with P-channel devices and got a good amplifier, But PMOS devices take up a lot of space on an IC.

Try a new configuration using an NMOS with the drain connected to the gate.

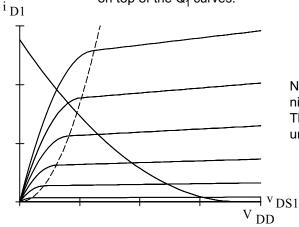


If I draw the curve with respect to V_{DD} - V_{DS2} = V_{DS1} , it will go backwards and can now be drawn on top of the Q_1 curves:





o Vdd



Notice that the new "load line" curves up. Its non-linearity will nicely offset the inherent i_D vs v_{GS} non-linearity of the Q_1 . This results in a very linear transfer characteristic and an unexpected sq root in the gain term. Too bad the gain stinks.

$$A_{v} = \sqrt{\frac{W_1 \cdot L_2}{L_1 \cdot W_2}}$$

Depletion-type MOSFET as R_D p.421

The connection of Q_2 's drain to its gate insured that it was in the saturation region. The same connection will not have the

The same connection will not have the same effect on a depletion-type NMOS. Because these parts have a negative V_t , V_D must be $-V_t$ volts higher than the gate. This is not a bad thing, because now we'll get a current flow even with $v_{GS} = 0$. That means that we can tie the gate to the source and simply operate on the $v_{GS} = 0$ curve.

If I draw the v_{GS} = 0 curve with respect to V_{DD} - V_{DS2} = V_{DS1} , it will go backwards and can now be drawn on top of the C_1 curves:

This look an awful lot like the PMOS load, but it's a little bit strange because of \mathbb{Q}_2 body effects.

