ECE 2100 Lecture Notes 4/4/03

Stuff

Exam 3 Wednesday 4/9/03

Primarily Ch.4 (BJTs), but may include any earlier material. Old exams are available on the HW web page.

MOSFET Lab today: Bring lab card with at least \$4.50.

Bring your textbook to lab

Start with MOSFET part of Wednesday's notes **MOSFETS**

Body or substrate

Spice #S2, due: M, 4/7 2 handouts

A. Stolp 4/5/03

HW #20, due: W, 4/9 Ex4.45, Ex4.46

Problems 4.120, 4.119, The transistor of HW 19, problem 1 has C_{π} = 11pF, C_{μ} = 2pF & 1pF of stray capacitance between the base & collector, find f_{CH} due to these.

ans 4.120
$$r_0 = \frac{r_{\mu} + r_{\pi}}{\beta + 1}$$
 last problem 1.82·MHz

HW # 21, due: F 4/11 Ex5.1 - Ex5.8

ans: Ex5.7: V_{SB} =4V, i_D =0.182mA, r_o =578ohm

Threshold Voltage Minimum voltage to induce a channel (n) in the p substrate, called inversion

n-channel enhancement:

Ohmic region of operation (for small v_{DS})

$$r_{DS} = \frac{1}{k_n \cdot \frac{W}{L} \cdot (v_{GS} - V_t)}$$

Triode Region (aka, linear, also includes ohmic region)

Both ends of the channel are still open. $v_{GD} > V_t$ $v_{DS} < v_{GS} - V_t$ Drain current = $i_D = k_n \cdot \frac{W}{t} \cdot \left| \left(v_{GS} - V_t \right) \cdot v_{DS} - \frac{1}{2} \cdot v_{DS}^2 \right|$

Saturation Region (Beware, this is nothing like the saturation region of a BJT)

 $v_{DS} = v_{GS} - V_t$ $i_D = \frac{1}{2} \cdot k_n \cdot \frac{W}{I} \cdot (v_{GS} - V_t)^2$
$$\begin{split} &i_D = \frac{1}{2} \cdot k'_n \cdot \frac{W}{L} \cdot \left(v_{GS} - V_t\right)^2 \cdot \left(1 + \lambda \cdot v_{DS}\right) \\ &\text{Early voltage} = & V_A = \frac{1}{\lambda} \qquad r_o = \frac{1}{\lambda \cdot I_D} = \frac{V_A}{I_D} \end{split}$$

Body Effects (No such thing if the source and body are connected.)

Don't ever let the body become 0.7V more + than Source or the body-source diode will conduct. This can lead to unpredictable effects, including "latch-up" or total destruction. Same goes for Drain.

The best way to think of the body is as a second gate, which affects the channel a little like the regular gate. A + voltage on the body would tend to open up the channel and a - voltage would tend to close the channel.

A negative voltage on the body will effectively increase the gate voltage necessary to turn the MOSFET on. This is how you account for the body effect, by changing the V₁ of the MOSFET.

See p. 374 in text.

Electron charge: $q = 1.60 \cdot 10^{-19} \cdot \text{coul}$

typical: $\gamma := 0.5 \cdot \sqrt{V}$

typical: $\phi_f = 0.3 \cdot V$ $2 \cdot \phi_f = 0.6 \cdot V$

Permittivity of silicon: $\varepsilon_s := 1.035 \cdot 10^{-12} \cdot \frac{F}{100}$

ECE 2100 Lecture Notes 4/4/03 p2

Thermal effects

$$\Delta V_t \sim -2 \cdot \frac{mV}{degC}$$
 just like V_{BE}

$$k_n \cdot \frac{W}{L} = K$$
 is proportional to $T^{\frac{3}{2}} = \frac{1}{\sqrt{T^3}}$

2nd effect dominates, so in decreases with temp, So MOSFETs can be hooked in parallel.

You can't do that with BJTs or one may thermally run away. In BJTs, i_C increases with temp, so when two are in parallel, the hottest one takes the most current-- and gets even hotter...

Breakdown Mechanisms

Nondestructive (if power is not too great)

Drain-Body diode breakdown, like zener diode, 50 to 100V

Drain-Source "punch-through" in small devices, ~20V

Destructive

Gate insulation breakdown ("burn-through"), ~50V, easy to get with static electricity. Gate is usually protected by diodes, but is still easily hurt.

Depletion-type MOSFET

Channel already exists by doping, even with no v_{GS}.

Everything is the same, except V_t is negative

Symbols try to show a channel

mode, v_{GS}< 0

Enhancement-mode MOSFET

$$I_{DSS} = \frac{1}{2} \cdot k_n \cdot \frac{W}{L} \cdot V_t^2 \qquad k_n \cdot \frac{W}{L} = \frac{2 \cdot I_{DSS}}{V_t^2}$$

Equations are often rewritten in terms of I_{DSS} , because I_{DSS} is so easy to measure

Small
$$v_{DS}$$
 $r_{DS} = \frac{V_t^2}{I_{DSS} (V_{GS} V_t)}$

Triode:
$$i_D = I_{DSS} \cdot \left[2 \cdot \left(\frac{v_{GS}}{v_t} - 1 \right) \cdot \frac{v_{DS}}{v_t} - \left(\frac{v_{DS}}{v_t} \right)^2 \right]$$

Saturation:
$$i_D = I_{DSS} \cdot \left(1 - \frac{v_{GS}}{V_t}\right)^2$$

