A. Stolp 2/18/03

Stuff

HW #12, due M, 2/24

handout

SPICE #S1, due W, 3/5

hw 12 handout

Shunt Regulators

The purpose of a voltage regulator is to keep the voltage at the "load" as constant as possible. Two separate things can cause the load voltage to change -- changes (including ripple) in the source voltage and changes in the load resistance. A simple voltage regulator can be made with a zener diode.

Shunt regulator

Check If you assumed conducting, then check current.

$$I_D := I_1 - I_L$$
 $I_D = 30 \cdot mA > 0$, so assumption OK

What is the smallest V_S for which V_L remains "regulated"? Figure V_L and I_L and as above, now assume $I_D = 0$. Anything less than this and the regulator "drops out" of regulation.

$$I_{1min} := I_L$$
 $I_{1min} = 20 \cdot mA$

$$V_{R1min} := I_{1min} \cdot R_1$$
 $V_{R1min} = 2 \cdot V$

$$V_{Smin} := V_D + V_{R1min}$$
 $V_{Smin} = 12 \cdot V$

Assuming $V_S = 15V$ again, what is the smallest R_L for which the remains "in regulation". I_1 is as calculated before.

$$I_{Dmin} := 0 \cdot mA$$
 $I_{Lmax} := I_1$ $R_{Lmin} := \frac{V_D}{I_{Lmax}}$ $R_{Lmin} = 200 \cdot \Omega$

Of course these calculation assume an ideal zener diode which holds exactly the same reverse voltage regardless of the current, right down to 0 current. Oh, would that it were so easy...

Non-ideal zener

V 7 = Specified zener voltage

I_{ZT} = The current required to get the specified zener voltage

 r_7 = The diode resistance, defined by the slope of the diode curve

 V_{Z0} = The smallest zener voltage due to r_Z if there were no "knee"

 $V_{Z0} = V_Z - r_Z \cdot I_{ZT}$

 I_{7K} = The knee current, the minimum current under which the diode voltage no longer considered "regulated"

 V_{7K} = The knee voltage at I_{7K} .

Above the knee, we can model the diode as:

ECE 2100 Lecture Notes 2/19/03 p2 Non-ideal shunt regulator

Let's say we have the specs for the diode:

$$V_Z = 10 \cdot V$$
 at 50 mA, which means: $I_{ZT} = 50 \cdot mA$

$$r_Z := 4 \cdot \Omega$$
 $I_{ZK} := 5 \cdot mA$

We need V_{Z0} to complete our model of the diode. This number is rarely given. Usually you'll have to calculate it.

$$V_{Z0} := V_Z - I_{ZT} \cdot r_Z$$
 $V_{Z0} = 9.8 \cdot V$

This circuit can now be analyzed by superposition, Thevenin equivalent, or by nodal analysis. But we'll put that off for a minute and find the limit cases first, because they are a little easier.

What is the smallest V_S for which V_I remains "regulated"?

$$V_{Dmin} = V_{Z0} + I_{ZK} \cdot r_{Z}$$
 $V_{Dmin} = 9.82 \cdot V$

 $I_{1min} := I_{ZK} + I_{Lmin}$

$$V_{Dmin} = 9.82 \cdot V_{Dmin}$$

$$I_{1min} = 24.64 \cdot mA$$

$$I_{Dmin} := I_{ZK}$$

$$I_{Lmin} := \frac{V_{Dmin}}{R_{L}}$$

$$I_{Lmin} = 19.64 \cdot mA$$

$$I_{1min} = 24.64 \cdot mA$$

$$I_{1min} = 24.64 \cdot mA$$
 $V_{Smin} = V_{Dmin} + I_{1min} \cdot R_1$ $V_{Smin} = 12.284 \cdot V$

$$V_{Smin} = 12.284 \cdot V$$

Assuming $V_S = 15V$ again, what is the smallest R_L for which the remains "in regulation".

$$I_{Dmin} = I_{ZK}$$
 again

$$V_{Dmin} = V_{Z0} + I_{ZK} \cdot r_{Z}$$
 $V_{Dmin} = 9.82 \cdot V$

$$V_{Dmin} = 9.82 \cdot V$$

$$I_{1max} := \frac{V_S - V_{Dmin}}{R_1}$$

$$I_{1max} = 51.8 \cdot mA$$

$$I_{Lmax} = I_{1max} - I_{Dmin}$$
 $I_{Lmax} = 46.8 \cdot mA$

$$I_{Lmax} = 46.8 \cdot mA$$

$$R_{Lmin} := \frac{V_{Dmin}}{I_{Lmax}}$$

R_{Lmin} =
$$209.8 \cdot \Omega$$

For the general analysis, make a Thevenin's equivalent

$$\begin{array}{c|c} R_1 := 100 \cdot \Omega \\ \hline \\ r_Z \\ \hline \\ R_{Th} := \frac{1}{\frac{1}{R_1} + \frac{1}{r_Z}} \\ \hline \end{array}$$

If $R_1 >> r_7$, then $R_{Th} \sim r_7$

$$\frac{R}{Th} = 3.846 \cdot \Omega$$

$$V_{Th} = 10 \cdot V$$

V Th = 10 •V Now you can find the voltage across almost any load very quickly

Regulation

Load Regulation =
$$\frac{V_{nL} - V_{fL}}{I_{fL} - I_{nL}} = \frac{\Delta V_{L}}{\Delta I_{L}} = \frac{-V_{RTh}}{I_{L}} = -R_{Th} = -\frac{1}{\frac{1}{R_{1}} + \frac{1}{r_{Z}}}$$

Line Regulation =
$$\frac{V_{Lmax} - V_{Lmin}}{V_{Smax} - V_{Smin}} = \frac{\Delta V_{L}}{\Delta V_{S}} = \frac{\Delta V_{Th}}{\Delta V_{S}} = \frac{d}{dV_{S}} \left(V_{S} - V_{Z0} \right) \cdot \frac{r_{Z}}{R_{1} + r_{Z}} + V_{Z0} \right] = \frac{r_{Z}}{R_{1} + r_{Z}}$$

no load current, or constant load current

ECE 2100 Lecture Notes 2/19/03 p3

Design

Select a diode such the $V_{Z0} > V_{Lmin}$ required. Now design R_1 for the minimum R_L and minimum V_S .

$$I_{Lmax} := \frac{V_{Dmin}}{R_{Lmin}}$$

$$I_{Lmax} = 65.47 \cdot mA$$

Let's say we select the diode:

$$V_Z := 10 \cdot V$$
 at 50 mA, which means: $I_{ZT} := 50 \cdot mA$

$$r_Z := 4 \cdot \Omega$$
 $I_{ZK} := 5 \cdot mA$

We need V_{Z0} to complete our model of the diode. This number is rarely given. Usually you'll have to calculate it.

$$V_{Z0} = V_Z - I_{ZT} \cdot r_Z$$

$$V_{Z0} = 9.8 \cdot V$$

$$I_{Dmin} = I_{ZK}$$

$$V_{Dmin} = V_{Z0} + I_{ZK} \cdot r_{Z}$$
 $V_{Dmin} = 9.82 \cdot V$

$$V_{Dmin} = 9.82 \cdot V$$

$$I_1 := I_{Lmax} + I_{Dmin}$$

$$I_1 = 70.47 \cdot mA$$

$$R_1 := \frac{V_S - V_{Dmin}}{I_1}$$

$$R_1 = 73.5 \cdot \Omega$$

Select the standard value of 72Ω $105 \cdot \% \cdot 72 \cdot \Omega = 75.6 \cdot \Omega$

won't work in worst case

Select the standard value of R $_1$ = $68 \cdot \Omega$ $105 \cdot \% \cdot R$ $_1$ = $71.4 \cdot \Omega$ OK

Must check some power dissipations.
$$P_{R1} = \frac{\left(V_{Smax} - V_{Dmin}\right)^2}{R_1} = 0.758 \cdot W$$
 need a 1 watt R₁. Can be a combination of lower wattage

What if R_L were removed? I
$$_{Zmax} := \frac{V Smax - V Z0}{R_1 + r_Z}$$
 I $_{Zmax} = 100 \cdot mA$

$$I_{Zmax} = 100 \cdot mA$$

$$P_{Zmax} = I_{Zmax} \cdot V_{Z0} + I_{Zmax}^2 \cdot r_Z = 1.02 \cdot W$$

need better than a 1 W zener

Can be two or more in series, but not in parallel, one V₇ will always be a little smaller and that diode will take the most current.

Diode Equation section 3.2 in book

Actually diode characteristic is a curve

Diode Equation

diode voltage

Diode current:
$$I_d = I_s \cdot \left(e^{\frac{V_d}{n \cdot V_T}} - 1 \right)$$
 Usually drop this 1 in forward bias

Saturation current (AKA scale current)

Thermal voltage
$$=\frac{k \cdot T}{q} \sim 25 \cdot mV$$

Fudge factor, assume n = 1 in ICs and n = 2 for discrete parts

Other permutations of the diode equation:

$$V_{d} = n \cdot V_{T} \cdot \ln \left(\frac{I_{d}}{I_{s}} \right) \qquad I_{s} = \frac{I_{d}}{\left(\frac{V_{d}}{e^{n \cdot V_{T}} - 1} \right)}$$

Absolute temperature: $T = {}^{\circ}C + 273$

Electron volt: $eV := 1.60 \cdot 10^{-19}$ joule

Boltzmann's constant: $k := 8.63 \cdot 10^{-5} \cdot \frac{eV}{}$

Electron charge: $q := 1.60 \cdot 10^{-19} \cdot \text{coul}$