1. (a) (10 points)

For the circuit shown, write three independent equations for the node voltages v_{1}, v_{2}, and v_{3}. The quantity i_{x} must not appear in the equations.
(b) (10 points)

Make a consistency check on your equations by setting one or more resistor values to 0 or ∞ and setting other sources and resistor to values for which v_{1}, v_{2}, and v_{3} are obvious.
(c) (10 points)

For the circuit shown, write three independent equations for the three mesh currents i_{1}, i_{2}, and i_{3}. The quantity v_{1} must not appear in the equations.
(d) (10 points)

Make a consistency check on your equations by setting one or more sources to zero and using convenient resistor and source values.
2. (30 points)

Find the Thevenin's equivalent circuit at terminals a-b. Hint: Use node voltage method to find v_{th}.
3. (30 points)

Calculate the power furnished or absorbed by the 30 V voltage source, and state whether it is furnished or absorbed.

