3. (30 points)
a. Derive an expression for i_{2}. The expression must not contain more than the circuit parameters $ß, \mathrm{~V}_{\mathrm{a}}, \mathrm{i}_{\mathrm{a}}, \mathrm{R}_{1}$, and R_{2}.

b. Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.
ans: a) $i_{2}=\frac{(1-\beta) i_{a} R_{1}+V_{a}}{(1-\beta) R_{1}+R_{2}}$
b) Many possible answers. See solution below.
sol'n: (a) Use Kirchhoff's laws to write several equations. Then eliminate unwanted variables.

We sum currents out of top-center node:

$$
-\mathrm{i}_{1}-\mathrm{i}_{\mathrm{a}}+\mathrm{i}_{2}=0
$$

Note that summing currents out of bottom-center node does not give us anything new. By Ohm's law, we also have

$$
\mathrm{i}_{1}=\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}
$$

Now, we sum voltages around a loop. We choose the outer loop because the inner loops have a current source with unknown voltage drop.

$$
\beta v_{1}-v_{1}+V_{a}-v_{2}=0 \quad \text { or } \quad(\beta-1) v_{1}+V_{a}-v_{2}=0
$$

By Ohm's law, we also have

$$
\mathrm{v}_{2}=\mathrm{i}_{2} \mathrm{R}_{2}
$$

After the Ohm's law substitutions, we have two equations, and we may eliminate v_{1}.

Use the simpler equation first:

$$
\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}+\mathrm{i}_{\mathrm{a}}-\mathrm{i}_{2}=0 \quad \text { or } \quad \mathrm{v}_{1}=\left(\mathrm{i}_{2}-\mathrm{i}_{\mathrm{a}}\right)
$$

Substitute for v_{1} in the second equation:

$$
(\beta-1) R_{1}\left(i_{2}-i_{a}\right)+V_{a}-i_{2} R_{2}=0
$$

After some algebra, we get

$$
\mathrm{i}_{2}=\frac{(1-\beta) \mathrm{i}_{\mathrm{a}} \mathrm{R}_{1}+\mathrm{V}_{\mathrm{a}}}{(1-\beta) \mathrm{R}_{1}+\mathrm{R}_{2}} \quad \text { units consistent }
$$

(b) There are many possible consistency checks.

1) $i_{a}=0$ and $R_{1}=0$. Then $v_{1}=0, ~ \beta v_{1}=0$, and sum v's around outer loop gives $i_{2}=V_{a} / R_{2}$. Our formula also gives V_{a} / R_{2}.
2) Consider $R_{1}=0$ and $R_{2}=0$. As in (1), $v_{1}=0$ and $\beta v_{1}=0$. Since $R_{2}=0$ we also end up with a short across V_{a} :

Our formula gives

$$
\lim _{\mathrm{R}_{2} \rightarrow 0} \frac{\mathrm{~V}_{\mathrm{a}}}{\mathrm{R}_{2}}=\infty \quad \text { from (1) } \quad \text { for } \mathrm{i}_{2}
$$

3) Consider $i_{a}=0, \beta=0$:

Our formula gives

$$
\mathrm{i}_{2}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

4) Consider $R_{1} \rightarrow \infty$ (open circuit)

Clearly $\mathrm{i}_{\mathrm{a}}=\mathrm{i}_{2}$ since the same current flows through elements in series.

Our formula gives:

$$
\begin{aligned}
i_{2} & =\lim _{R_{1} \rightarrow \infty} \frac{(1-\beta) i_{a} R_{1}+V_{a}}{(1-\beta) R_{1}+R_{2}}=\lim _{R_{1} \rightarrow \infty} \frac{(1-\beta) i_{a} R_{1}}{(1-\beta) R_{1}} \\
& =i_{a}
\end{aligned}
$$

5) Consider $\mathrm{R}_{2} \rightarrow \infty$ (open circuit): We have $\mathrm{i}_{2}=0$ since no current flows through the open circuit. Our formula gives:

$$
i_{2}=\lim _{R_{1} \rightarrow \infty} \frac{(1-\beta) i_{a} R_{1}+V_{a}}{(1-\beta) \mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{\text { const }}{\infty}=0
$$

Many more consistency checks are possible.

