PRACTICE EXAM SOLUTION Prob 1

1. a. (5 points)

Calculate v_{1}.

b. (5 points)

Calculate i_{1}.

ans: a) 40 V
b) 2 A
sol'n: (a) The 100 V source is directly across $20 \mathrm{k} \Omega \| 30 \mathrm{k} \Omega$ in series with $8 \mathrm{k} \Omega$. Thus, the rest of the circuit is irrelevant in the calculation of v_{1}.

$$
\begin{aligned}
20 \mathrm{k} \Omega \| 30 \mathrm{k} \Omega & =10 \mathrm{k} \Omega \cdot 2 \| 3=10 \mathrm{k} \Omega \cdot \frac{2 \cdot 3}{2+3} \\
& =10 \mathrm{k} \Omega \cdot \frac{6}{5}=12 \mathrm{k} \Omega
\end{aligned}
$$

Now we have a voltage divider.

$$
\mathrm{v}_{1}=100 \mathrm{~V} \cdot \frac{8 \mathrm{k} \Omega}{12 \mathrm{k} \Omega+8 \mathrm{k} \Omega}=40 \mathrm{~V}
$$

(b) The 10 A source current is in series with $40 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega$. Thus, all of the 10 A must flow through the $40 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega$, and the rest of the circuit is irrelevant in the calculation of i_{1}. We use the current divider formula, and we may ignore the $100 \mathrm{k} \Omega$ resistor.

