LABORATORY PROJECT NO. 2 Report Grading

25		Communication
5		Clarity of style (ease of reading, and etc.)
4		Organization (ease of locating figures/code/etc)
4		English (grammar, punctuation, and etc.)
4		Section numbers and headings (use section numbers shown below)
4		Equations explained (at least one sentence between equations)
4 3 5		Figure titles and numbers
5		Matlab listings and comments (put in appendices)
5		Abstract (succinct summary of numerical results)
5	1.	<i>Introduction</i> (motivation for lab, overview of report organization)
10	2.	Design of the Astable Multivibrator
5		2.1. Selection of R ₁ and R ₂
5		2.2. Selection of R_3 and C_1
15	3.	Construction and Testing of Astable Multivibrator
3		3.1 Measured Component Values
3		3.2 Square Wave Frequency
4		3.3. Predicted and Measured C ₁ and v ₀ Waveforms
3		3.4. Measured Value of R ₄
4 3 2		3.5. Flashing LED Rate
10	4.	Measurement of Visual Fusion Rate
4		4.1. Critical Fusion Frequency
3		4.2 LED Voltage
3		4.3 LED Current
15	5.	Design and Construction of LED Circuit
		5.1. Equation for v_1 Before LED Turns On
$\bar{2}$		5.2. Equation for v_1 After LED Turns On
2 2 3 3 2		5.3. Sketch of v_1 vs Time
3		5.4. Sketch of i_{LED} vs Time
2		5.5. Calculation of Potentiometer Setting
1		5.6. Plot of v_1 vs Time
2		5.7. Plot of i_{LED} vs Time
10	6.	Measurement and Analysis of Peripheral Visual Perception
4		6.1. Perceived LED Flash Rate for Central Field of View
3		6.2. Perceived LED Flash Rate for Peripheral Vision
3		6.3. Sketch of Peripheral Vision Response Waveform
5	6.	Conclusion (summary of key results, including numerical values)