Ex: \quad Find the voltage, v_{C}, on the capacitor in the circuit below as a function of time if $v_{\mathrm{C}}(t=0)=2.4 \mathrm{~V}$.

Sol'n: We observe that voltage v_{C} appears across both the R and C, as shown below.

$$
\left.C=6 \mu \mathrm{~F} \frac{\square_{-}^{v_{\mathrm{C}}} \downarrow_{\mathrm{C}}}{} \quad i_{\mathrm{R}} \downarrow_{-}^{v_{\mathrm{C}}}\right\} R=15 \mathrm{k} \Omega
$$

Using the defining equation of a capacitor and Ohm's law, we have the following results:

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

and

$$
i_{R}=\frac{v_{C}}{R}
$$

Since the current must be the same everywhere in the loop, and since the currents are measured with opposite polarities, we have that i_{C} and i_{R} are equal but opposite.

$$
i_{C}=-i_{R}
$$

or

$$
C \frac{d v_{C}}{d t}=-\frac{v_{C}}{R}
$$

One way to solve this equation is to separate the variables:

$$
C \frac{1}{v_{C}} d v_{C}=-\frac{1}{R} d t
$$

Integrating both sides yields the following result:

$$
C \int_{v_{C}(t=0)}^{v_{C}(t)} \frac{1}{v_{C}} d v_{C}=-\frac{1}{R} \int_{0}^{t} d t
$$

or

$$
\left.C \ln v_{C}(t)\right|_{v_{C}(t=0)} ^{v_{C}(t)}=-\left.\frac{1}{R} t\right|_{0} ^{t}
$$

or

$$
C\left[\ln v_{C}(t)-\ln v_{C}(0)\right]=-\frac{1}{R} t
$$

or

$$
\ln \frac{v_{C}(t)}{v_{C}(0)}=-\frac{t}{R C}
$$

or

$$
\frac{v_{C}(t)}{v_{C}(0)}=e^{-\frac{t}{R C}}
$$

or

$$
v_{C}(t)=v_{C}(0) e^{-\frac{t}{R C}}
$$

Substituting values given in the problem, we have the following answer:

$$
v_{C}(t)=2.4 \mathrm{~V} \cdot e^{-\frac{t}{15 \mathrm{k} \Omega \cdot 6 \mu \mathrm{~F}}}=2.4 \mathrm{~V} \cdot e^{-\frac{t}{90 \mathrm{~ms}}}
$$

