Ex: \quad The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t, at which v_{C} is equal to 2 V .

$$
v_{C}(t)=1+3\left(1-e^{-t / 8 \mathrm{~ms}}\right) \mathrm{V}
$$

Sol'n: We begin by substituting for the value of $v_{C}(t)$ on the left side.

$$
2 \mathrm{~V}=1+3\left(1-e^{-t / 8 \mathrm{~ms}}\right) \mathrm{V}
$$

We move constant terms to the left side in order to isolate the exponential.

$$
2 \mathrm{~V}=4-3 e^{-t / 8 \mathrm{~ms}} \mathrm{~V}
$$

or

$$
-2 \mathrm{~V}=-3 e^{-t / 8 \mathrm{~ms}} \mathrm{~V}
$$

or

$$
\frac{2}{3}=e^{-t / 8 \mathrm{~ms}}
$$

or

$$
\ln \frac{2}{3}=-t / 8 \mathrm{~ms}
$$

Using $\ln (1 / x)=-\ln (x)$ and multiplying both sides by 8 ms isolates the t.

$$
t=8 \mathrm{~ms} \cdot \ln \frac{3}{2}=3.24 \mathrm{~ms}
$$

