Ex: \quad In (a)-(c), the current $i_{\mathrm{L}}(t)$ flowing into a 0.5 mH inductor is listed. Find the voltage, $\nu_{\mathrm{L}}(t)$, across the inductor in each case as a function of time:

a) $i_{L}(t)=5 \mathrm{~mA}$
b) $i_{L}(t)=5 t \mathrm{~mA} / \mathrm{s}$
c) $i_{L}(t)=5 \sin (2 \pi \cdot 100 t) \mathrm{mA}$

Sol'N: We use the defining equation for an inductor in each case:

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

a)

$$
v_{L}=L \frac{d}{d t} 5 \mathrm{~mA}=L \cdot 0 \mathrm{~A} / \mathrm{s}=0 \mathrm{~V}
$$

b)

$$
v_{L}=L \frac{d}{d t} 5 t \mathrm{~mA} / \mathrm{s}=0.5 \mathrm{mH} \cdot 5 \mathrm{~mA} / \mathrm{s}=2.5 \mu \mathrm{~V}
$$

c)

$$
\begin{aligned}
& v_{L}=L \frac{d}{d t} 5 \sin (2 \pi \cdot 100 t) \mathrm{mA}=0.5 \mathrm{mH} \cdot 5 \cos (2 \pi \cdot 100 t) 200 \pi \mathrm{~mA} / \mathrm{s} \\
& v_{L}=\frac{\pi}{2} \cos (2 \pi \cdot 100 t) \mathrm{mV}
\end{aligned}
$$

