Ex: \quad In (a)-(c), the voltage $v_{\mathrm{C}}(t)$ across a $0.2 \mu \mathrm{~F}$ capacitor is listed. Find the current, $i_{\mathrm{C}}(t)$, flowing in the capacitor in each case as a function of time:

a) $v_{C}(t)=3 \mathrm{~V}$
b) $v_{C}(t)=1000 t \mathrm{~V} / \mathrm{s}$
c) $v_{C}(t)=1-e^{-t / 4 \mathrm{~ms}} \mathrm{~V}$

Sol'n: We use the defining equation for a capacitor in each case:

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

a)

$$
i_{C}=C \frac{d}{d t} 3 \mathrm{~V}=0 \mathrm{~A}
$$

b)

$$
i_{C}=C \frac{d}{d t} 1000 t \mathrm{~V} / \mathrm{s}=0.2 \mu \mathrm{~F} \cdot 1000 \mathrm{~V} / \mathrm{s}=200 \mu \mathrm{~A} \text { or } 0.2 \mathrm{~mA}
$$

c)

$$
i_{C}=C \frac{d}{d t}\left(1-e^{-t / 4 \mathrm{~ms}}\right) \mathrm{V}=0.2 \mu \mathrm{~F} \cdot\left(-\frac{-1}{4 \mathrm{~ms}} e^{-t / 4 \mathrm{~ms}}\right)=50 \mu \mathrm{~A} e^{-t / 4 \mathrm{~ms}}
$$

