

1. In (a)-(c), the voltage $v_C(t)$ across a 0.2 µF capacitor is listed. Find the current, $i_C(t)$, flowing in the capacitor in each case as a function of time:

a)
$$v_C(t) = 3 V$$

b) $v_C(t) = 1000t V/s$
c) $v_C(t) = 1 - e^{-t/4 \text{ ms } V}$

2. In (a)-(c), the current $i_{\rm L}(t)$ flowing into a 0.5 mH inductor is listed. Find the voltage, $v_{\rm L}(t)$, across the inductor in each case as a function of time:

a)
$$i_L(t) = 5 \text{ mA}$$

b) $i_L(t) = 5 \text{ mA/s}$
c) $i_L(t) = 5 \sin(2\pi \cdot 100t)$

3. The following equation describes the voltage, $v_{\rm C}$, across a capacitor as a function of time. Find the time, *t*, at which $v_{\rm C}$ is equal to 2 V.


mA

$$v_C(t) = 1 + 3(1 - e^{-t/8 \text{ms}}) \text{ V}$$

4. The following equation describes the voltage, v_L , across an inductor as a function of time. Find an expression for the current, $i_L(t)$, through the inductor as a function of time. Assume that $i_L(t = 0) = 0$ A.

$$v_L(t) = 2 + 6(1 - e^{-t/12.5\mu s}) \text{ kV}$$

5. Find the voltage, v_C , on the capacitor in the circuit below as a function of time if $v_C(t=0) = 2.4$ V.

