Ex:

Find the Thevenin equivalent circuit at terminals $a-b . v_{\mathrm{x}}$ must not appear in your solution. Hint: use the node-voltage method.
sol'r: $\quad V_{T h}=V_{a, b}$ open circuit wee may use any Method we desire
to solve for vip. Here, we use the node-voitage method.

$$
v_{x}=v_{\text {Th }}-c v=v_{\text {Th }} \text { for dependent sore }
$$

$$
\text { current sum for } V_{\text {Th }} \text { node (dashed bubble): }
$$

$$
\frac{v_{T h}-v_{S}}{R_{1}}+\frac{v_{T h}}{R_{2}}-\alpha v_{T_{h}}=0 A
$$

$$
\text { or } v_{T h}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}-\alpha\right)=\frac{v_{5}}{R_{1}}
$$

$$
\text { or } \quad v_{T h}=\frac{v_{5}}{R_{1}} \quad \frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}-\infty}
$$

$$
v_{T h}=\frac{v_{s}}{1+\frac{R_{1}}{R_{2}}-\alpha R_{1}} \text { or } \frac{v_{s}}{R_{1}} R_{1}\left\|R_{2}\right\|-\frac{1}{\alpha}
$$

To find $R_{T h}$, we short a to b and find the short-circuit current, $i_{\text {se }}$ that flows from a to b.

The wire from a to b means the top rail is at ob. Thus, $v_{x}=O V-O V=O V$

Also, it follows that $x V_{x}=0$ so the dependent current source effectively disappears.

Furthermore, R_{2} is bypassed by the short, meaning no current flows in R_{z}. Our equivalent circuit model is as' follows :

We have $i_{s c}=\frac{V_{E}}{R_{i}}$.

Now we use the formula $R_{T h}=\frac{V_{T h}}{i_{\Delta x}}$.

$$
\begin{aligned}
R_{T h} & =\frac{\frac{v_{s}}{1+\frac{R_{1}}{R_{2}}-\alpha R_{1}}}{\frac{v_{5}}{R_{1}}}=\frac{R_{1}}{1+\frac{R_{1}-\alpha R_{1}}{R_{2}}} \\
& =\frac{1}{\frac{1}{R_{1}+\frac{1}{R_{2}} \cdots \alpha}} \text { or } R_{1}\left\|R_{2}\right\|-\frac{1}{\alpha}
\end{aligned}
$$

Theremin equivalent circuit:

Note: In this circuit, we have voltage - v_{x} across the dependent source and can use Ohm's law to find a resistance equivalent to the dependent source:

$$
R_{e q}=\frac{-V_{x}}{\alpha V_{x}}=-\frac{1}{\alpha}
$$

We can use $R_{\text {tog }}$ in place of the dependent sri, leading to a simpler solution for $V_{T h}$ from a v-divider and for $R_{\text {Th }}$ from lacking into the $a_{j} h$ terminals with v_{s} off.

