Ex:

For the circuit shown, write three independent equations for the node-voltages, $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3}. The quantity v_{x} must not appear in the equations.
Make at least one consistency check (other than a units check) on your equations. In other words, choose component values that make the values of v_{1}, v_{2}, and v_{3} obvious, and verify that your equations give these values. Specify your consistency check by listing a numerical value for every source and resistor.

Sol'm: i) First, we write v_{x} in terms of node voltages. Because it is connected to reference by only voltage source $v_{s j}$ the voltage a $\frac{1}{4}$ the upper node on the right side is $-v_{s}$.

$$
v_{x}=-v_{5}-v_{3}
$$

Note: we subtract the voltage for the node next to the minus sign at the v_{x} measurement.

Second, we check to see if node v_{1} is a supernode. In other words, we check to see if j_{1} is connected to another node by only a voltage source. Since tins is not the case, we write a standard node voltage eg'n for node v_{1}.

$$
\frac{v_{1}-o v}{R_{1}}+\frac{v_{1}--v_{s}}{R_{2}}-\alpha\left(-v_{s}-v_{3}\right)=o A
$$

We also write standard current $=$ ans for nodes v_{2} and v_{3}, since they are not supernodes.

$$
\begin{align*}
& \alpha\left(-v_{5}-v_{3}\right)+\frac{v_{2}-v_{3}}{R_{3}}+i_{5}=0 \mathrm{~A} \tag{2}\\
& \frac{v_{3}--v_{5}}{R_{4}}+\frac{v_{3}-v_{2}}{R_{3}}-i_{5}=0 \mathrm{~A} \tag{3}
\end{align*}
$$

2) For the consistency check, we choose component and source values that make the values of node voltages obvious. Then we verify that the egins from abate give the expected answers.

Many checks are possible. One example is shown here.

Let $\alpha=0$ (so dependent sro disappears)
$v_{s}=6 \mathrm{~V}$
$i_{s}=12 \mathrm{~A}$
$R_{1}=\left\{\Omega, \quad R_{2}=2 \Omega, R_{3}=3 \Omega, R_{4}=4 \Omega\right.$,
$R_{5}=5 \Omega$.
Circuit: $6 Y$

Since no current out to maintain a flows in the 4Ω net zero charge, as resistor, the
voltage drop required by Kirchincfl's caw. (Consider a bubble across it is zero. around the bottom of Thus, $v_{3}=-6 V$. the circuit. The current out of the babble must
Also, since no be zero.)
current flows in the 4Ω resistor;
we have a
voltage divider
formed by the
$i \Omega$ and 2Ω :
$\therefore v_{1}=-6 v \cdot 1 \Omega /(1 \Omega+2 \Omega)=-2 v$

Finally, i $2 A$ from the current source flows thru the 3.52 and 5Ω resistors,
Thus, $v_{2}=v_{3}-12 A \cdot 3 \Omega$

$$
\begin{aligned}
& v_{2}=-6 v-36 v \\
& v_{2}=-42 v
\end{aligned}
$$

Now we ping values inti the complete rode-voltage eg'ns:
(1)

$$
\begin{aligned}
& -\frac{2-0 v}{151}+\frac{-2--6 v}{2 A}-0(-6--6 v) \\
= & -2 A+2 A-0 \\
= & 0 A \quad \text { eg'n is satisfied }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 0(-6--6 V)+\frac{-42--6 V}{3-\Omega}+12 A \\
= & 0-12 A+12 A \\
= & 0 \mathrm{~A} V \text { ign is satisfied }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \frac{-6--6 V}{4 s}+\frac{-6 V--42 V}{3 n}-12 A \\
= & -6 A+12 A-12 A \\
= & 0 A \quad \text { eg n is satisfied }
\end{aligned}
$$

