1.

For the circuit shown, write three independent equations for the node-voltages, $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3}. The quantity v_{x} must not appear in the equations.
2. Make at least one consistency check (other than a units check) on your expression for problem 1. In other words, choose component values that make the values of $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3} obvious, and verify that your answer to problem 1 gives these values. Specify your consistency check by listing a numerical value for every source and resistor.
3.

For the circuit shown, write three independent equations for the three mesh currents, i_{1}, i_{2}, and i_{3}. The quantity i_{x} must not appear in the equations.
4.

Find the Thevenin equivalent circuit at terminals $a-b . v_{X}$ must not appear in your solution. Hint: use the node-voltage method.
5.

Calculate the power dissipated by the dependent voltage source, (labeled $4 \mathrm{v}_{\mathrm{x}}$).

