Ex:

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_{o} in terms of not more than $\mathrm{v}_{\mathrm{s}}, \mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4}.
sol'n: We treat the op-amp as ideal, meaning we remove it and replace the output with a source called v_{0} and assume a ova drop across the t, - inputs.

After that, we take v-loops on the left and right that pass thru the OV drop across the + , inputs. we also take current sums at nodes.

For the v hoops, we have:

$$
\begin{aligned}
& v_{5}-i_{1} R_{1}+o v-i_{4} R_{4}=o v \\
& +i_{4} R_{4}-o V-i_{2} R_{2}-i_{2} R_{3}-v_{0}=O V \text { (on }
\end{aligned}
$$

Note: we use Ohm's law to write v-drop in terms of currents.

For current sums at nodes we have (for node to right of R_{1}):

$$
\begin{gathered}
-i_{1}+i_{2}+0 A=0 A \quad \text { or } i_{i}=i_{2} \\
n 0 \text { current into op -amp }
\end{gathered}
$$

For node above R4:

$$
-i_{3}+i_{4}+o A=O A \quad \text { or } i_{4}=i_{s}
$$

Substituting into v-lop eq'ns, we have

$$
v_{5}-i_{2} R_{1}-i_{5} R_{4}=0
$$

and $i_{5} R_{4}-i_{2} R_{2}-i_{2} R_{3}=V_{a}$.
The first egad gives $i_{2}=\frac{v_{3}-i_{3} R_{4}}{R_{j}}$. Using this in the and eq'n given'

$$
\begin{aligned}
& v_{0}=i_{5} R_{4}-\left(\frac{v_{5}-i_{5} R_{4}}{R_{1}}\right)\left(R_{2}+R_{3}\right) \\
& \text { or } \quad v_{0}=i_{5} R_{4}\left(1+\frac{R_{2}+R_{3}}{R_{1}}\right)-v_{5} \frac{R_{2}+R_{3}}{R_{4}}
\end{aligned}
$$

