Ex:

a) Derive an expression for i_{1}. The expression must not contain more than the circuit parameters $\alpha, v_{\mathrm{a}}, \mathrm{R}_{1}$, and R_{2}. Note: $\alpha \neq 0$.
b) Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.

Sole:

$$
\begin{aligned}
& \text { 9) we nave two inner y-loops: } \\
& -\bar{v}_{c}+-v_{2}+i_{1} R_{1}=o v \quad(\operatorname{top} v-1 o o p) \\
& \text { "using Ohm's law here } \\
& -i, R_{1}+x v_{2}=O V \quad \text { (bottom } v \text {-loop) } \\
& \text { From the and } e_{8} h, \quad \alpha v_{2}=i_{1} R_{1} \\
& \text { or } v_{2}=\frac{i_{1} R_{1}}{\alpha} \text {. } \\
& \text { From } 1 \leq L \text { begin, } \quad-V_{\text {q }}-\frac{i_{1} R_{1}}{\alpha}+i, R_{5}=\text { aV } \\
& \text { or } \quad i_{1}\left(R_{i}-\frac{R_{c}}{\alpha_{r}}\right)=V_{a} \\
& \text { or } \quad i_{1}=\frac{V_{a}}{R_{1}(1-!/ \alpha)}
\end{aligned}
$$

6) For the consistency check, we choose values of sources and F^{\prime} s that yield a simpler circuit for which solution is obvious. Many checks may be possible. Only one is required here.
ex: $v_{a}=o v, R_{1}=1 \Omega, R_{2}=2 \Omega, \alpha=3$.
The circuit has no independent power source. Thus, all currents and voltages $=0$. So $i_{i}=O A$.

Now we try our formula from (a):

$$
i_{1}=\frac{0}{\frac{1}{\operatorname{R}(1-1 / 3)}}=0 \quad r(\text { Consistent })
$$

sex: $R_{1}=\infty$ (open circuit), $R_{2}=2 \Omega, \alpha=3$,

$$
v_{a}=12 V
$$

If R, is open circuit, then $i_{1}=O A$.
Now we try our formula from (a):

$$
i_{f}=\frac{12 V}{\infty \Omega(1-1 / 3)}=\frac{12 v}{\infty \Omega}=0 A
$$

Note: Some consistency cheeks might lead to invalid eircuits such as v-sources shorted out. Avoid those. This particular circuit is prone to that problem.

