

Ex:

After being in position c for a long time, the switch moves from c to d at $t = t_0$.

Rail voltages = $\pm 12 \text{ V}$

- a) Choose either an R or C to go in box \mathbf{a} and either an R or C to go in box \mathbf{b} to produce the $v_0(t)$ shown above. (Note that v_0 stays high forever after $t_0 + 2$ ms.) Specify which element goes in each box and its value.
- b) Sketch $v_1(t)$, showing numerical values appropriately.
- c) Sketch $v_2(t)$, showing numerical values appropriately.
- d) Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 2$ ms, and for $t_0 + 2$ ms < t. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

solin: a) For v_0 to be low, (i.e., $\sim 12V$), we must have $V_2 \leq V_1$.

To find v₁, we slide the 4V source through the 6k si resistor and find that we have the equivalent of a -15V source and a voltage divider formed by the 3ks and 6ks resistors.

At t=0, we must have $V_2 < -5V$.

This is possible only if box a contains a resistor and box b contains a capacitor. If a is an R and b is a C, then the C will charge until $V_2 = -10V < V_1$.

When the switch moves from c to d, the capacitor voltage start charging toward OV, but it will still be -10V initially. This gives the desired waveform for $V_O(t)$: V_O will go high when $V_Z = V_I = -5 V$.

Note: The reasons why other components in boxes **a** and **b** fail to yield the desired $v_o(t)$ are as follows:

a = R and b = R cannot give
a waveform that changes after
a delay. Vo would have to
change instantly at t= to.

a = C and b = R would result in C charging until no current flows in R. This means $v_2 = 0V$, or $v_2 > v_1$, causing v_0 to be high before $t = t_0$.

a = C and b = C would result in an arbitrary voltage at v_2 , The total voltage drop across the two cls would be 10%. When the switch changes from c to d, the capacitors would charge until the total voltage drop across them was OV. The same current would flow in both Cls, causing a voltage change that would be inversely proportional to the C values. The waveform shown for volt) could be produced, but there is a lack of control over the initial value of vs. This would make the timing of the volt) waveform uncertain. Thus, we reject this solution.

Now we find possible values for R and C. We have the following circuit model for t>t;

$$v_{c}(t > t_{o}) = v_{c}(t \Rightarrow \infty) + \left[v_{c}(t_{o}^{+}) - v_{c}(t \Rightarrow \infty)\right] = \frac{-t/t}{n}$$

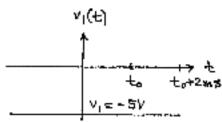
$$v_{c}(t > t_{o}) = v_{c}(t \Rightarrow \infty) + \left[v_{c}(t_{o}^{+}) - v_{c}(t \Rightarrow \infty)\right] = \frac{-t/t}{n}$$

$$V_c(t>t_o)=-10e$$
 $V_c(t>t_o)=-10e$ $V_c(t>t_o)=-10e$

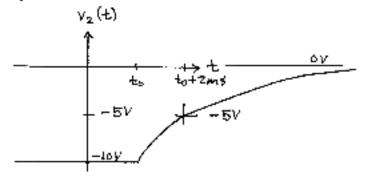
where
$$T = (R + 1kx)C$$

or
$$-10e^{-2ms/t}$$

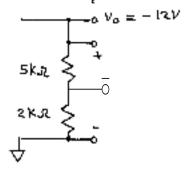
$$e^{-2ms/t}$$


$$e^{-2ms/t}$$

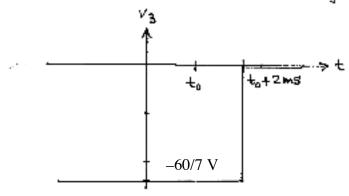
$$=\frac{1}{2}$$


$$-2ms' = t \ln \frac{1}{2}$$

$$t = \frac{2ms}{2ms} = 2.9 ms'$$


One soln is R = 1.9 kg and C = 1.4 F. Note: R = 0.0 is min R, $C = 2.9 \mu \text{ F}$ is max C. b) $v_1(t) = -5V$ as shown earlier.

c) $V_2 = V_C(t) = 10Ve^{-t/2.9ms}$ from (a)


d) When vo is low, the top diode will act like a wire and the bottom diode will act like an open circuit.

We have a voltage divider: $v_3 = -12 \text{ V} \cdot \frac{5 \text{ k}\Omega}{2 \text{ k}\Omega + 5 \text{ k}\Omega} = -\frac{60}{7} \text{ V}.$

When vo is high, the top diode will act like an open circuit, leaving the bottom part of the circuit disconnected from vo, (or any other power source).

Thus $v_2 = 0V$ when v_0 is high.

