1.

After being in position \mathbf{c} for a long time, the switch moves from \mathbf{c} to \mathbf{d} at $t=t_{\mathrm{O}}$.
Rail voltages $= \pm 12 \mathrm{~V}$

Choose either an R or C to go in box a and either an R or C to go in box \mathbf{b} to produce the $v_{\mathrm{O}}(\mathrm{t})$ shown above. (Note that v_{O} stays high forever after $t_{\mathrm{O}}+2 \mathrm{~ms}$.) Specify which element goes in each box and its value.
2. Sketch $v_{1}(\mathrm{t})$, showing numerical values appropriately.
3. a) Sketch $v_{2}(t)$, showing numerical values appropriately.
b) Sketch $v_{3}(\mathrm{t})$. Show numerical values for $t<t_{\mathrm{O}}$, for $t_{0}<t<t_{\mathrm{O}}+2 \mathrm{~ms}$, and for $t_{\mathrm{O}}+2 \mathrm{~ms}<t$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
4.

A frequency-domain circuit is shown above. Write the value of phasor \mathbf{V}_{3} in polar form.
5. Given $\omega=37 \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $v_{3}(\mathrm{t})$, the inverse phasor of \mathbf{V}_{3}.

