Ex:

a) Find the Thevenin equivalent of the above circuit relative to terminals \mathbf{a} and \mathbf{b}.
b) If we attach R_{L} to terminals a and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
c) Calculate the value of that maximum power absorbed by R_{L}.
solon:
a) $V_{T h}=V_{a, b}$ no load
with nothing connected from a to b, $i_{x}=0$ and $50 i_{x}=0 \mathrm{~V}$ acts like a wire $5 \% \Omega$

$$
\begin{aligned}
& \text { Since } i_{x}=0 \text {, there is no v-drop across } \\
& \text { the } 5 k \Omega \text { resistor. An outer voltage } \\
& \text { lop reveals that } v_{\text {Th }}=10 \mathrm{~V} \text {. }
\end{aligned}
$$

Because we nave a dependent source, we can find Ko h using the formula $^{\text {wi }}$ for

Although we have a dependent source, the log source between the top and bottom rails makes the $50 i_{x}$ and $3 k \Omega$ components irrelevant.

From an outer v-Lop, we have

$$
\begin{aligned}
i_{5 d} & =\frac{10 V}{5 k \Omega}=2 \mathrm{~mA} \\
\therefore R_{T h} & =\frac{v_{T h}}{i_{S A}}=\frac{10 V}{2 \mathrm{~mA}}=5 \mathrm{k}_{3}
\end{aligned}
$$

Note: The low source across the rails allows to ignore the $50 i_{x}$ and $3 k \Omega$. We may remove them. Then we observe that we are left with the Thevenin equivalent direct: $V_{T h}=10 V, R_{T / 4}=5 k \Omega$.

b) $R_{L}=R_{T h} \simeq 5 k$. for max poi transfer
C)

$$
\begin{aligned}
& P \max =\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{(60 V)^{2}}{4 \cdot 5 k \Omega}=\frac{100}{20} \mathrm{~mW} \\
& P_{\max }=5 \mathrm{~mW}
\end{aligned}
$$

