Ex:

a) Choose an R, an L, or a $C$ to be placed in the dashed-line box to make

$$
i(t)=0.5 \cos \left(6 \mathrm{k} t-135^{\circ}\right) \mathrm{A} .
$$

b) State the value of the component you chose for Problem 2. Note that the value of the component cannot be negative.
Sol'ri: we first transform the circuit to the frequency domain.

$$
T / T_{9}=30 \cdot(-j) \cdot 1 \angle 45^{\circ}=50 \angle 45^{\circ} \cdots 90^{\circ}=30<-45^{\circ}
$$

$$
\text { Note: }-j=1 \angle-90^{\circ}
$$

$$
j \omega L=j 6 K \cdot 1 m H=j 6 \Omega
$$

$$
I I=\frac{1}{2} \angle=135^{\circ} \mathrm{A}
$$

$$
\text { By ohm's law, } I=\frac{V_{g}}{z+j \varepsilon_{m}} .
$$

or $z+i 65=\frac{\pi g}{\pi}$

We contd solve for z directly in this sase, but it is instructive to solve. the problem using phase and magnitude separately,

$$
\begin{aligned}
& \angle(z+j 6 \Omega)=\angle V_{g}-\angle T \\
& \text { Note: } \angle\left(\frac{V_{q}}{\pi}\right)=\angle V_{g}-\angle T \\
& \angle(z+j 6 \Delta)=-45^{\circ}--135^{\circ}=9 c^{\circ}
\end{aligned}
$$

Wee conclude that $a+j b s$ must be. pure it imaginary and positive.

This means that $z$ might be an $L$ or a $c$ If it is a $c$, however, it must be Large enough that $z$ is smaller in magnitude than jus.

In either case, (bor C), we can write

$$
z+j 6 n=j n
$$

where $k$ is a positive constant.

Now we consider magnitude.

$$
|z+j \cos |=\left|\frac{V_{3}}{\mathbb{I}}\right|=\frac{\left|V_{g}\right|}{|I I|}=\frac{30}{\frac{1}{2}}=50
$$

Since we know $z+j 6=j l e$, we have

$$
\begin{aligned}
& |z+j 6|=1 e=60 \\
& z=j 60-j 6=j 54
\end{aligned}
$$

We must use an 1- to get a positive imaginary $z$ :

$$
\begin{aligned}
& z=j \omega L=j \cdot 6 k \cdot L=j 54 \\
& L=\frac{54}{6 k}=9 \mathrm{mH}
\end{aligned}
$$

