1. Give numerical answers to each of the following questions:
a) Rationalize $\frac{-65+j 3}{-52-j 39}$. Express your answer in rectangular form.
b) Find the rectangular form of $\left(\frac{2}{e^{-j 45^{\circ}}}\right)^{*}$. (Note: the asterisk means "conjugate".)
c) Given $\omega=9 \mathrm{rad} / \mathrm{sec}$, find the following inverse phasor:

$$
\mathrm{P}^{-1}\left[6 \cos \left(40^{\circ}\right)(1+\mathrm{j})\right]
$$

d) Find the magnitude of $\left(\frac{j}{4+j}\right)\left(\frac{e^{j 15^{\circ}}}{4-j}\right)$.
e) Find the real part of $\frac{10 e^{j 360^{\circ}}}{j^{2}}$.
2.


Choose an R , an L , or a C to be placed in the dashed-line box to make

$$
i(t)=0.5 \cos \left(6 \mathrm{k} t-135^{\circ}\right) \mathrm{A}
$$

3. State the value of the component you chose for Problem 2. Note that the value of the component cannot be negative.
4. 



Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{\mathrm{s}}(t)$, and show numerical impedance values for $\mathrm{R}, \mathrm{L}$, and C . Label the dependent source appropriately.
5. Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for $\mathbf{V}_{\mathrm{Th}}$ and the numerical rectangular form for the impedance value of $z_{\mathrm{Th}}$.

