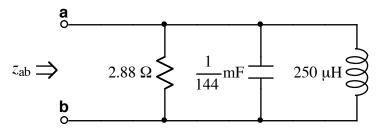


Ex:



Find a frequency, ω , that causes z_{ab} to have a phase angle of -45° , (i.e., imaginary part is the negative of the real part). Hint: use admittance, (the reciprocal of impedance).

For single components in parallel, using admittance = 1/2 is helpful.

$$\frac{1}{2^{2}ab} = \frac{1}{2^{2}R} + \frac{1}{2^{2}C} + \frac{1}{2^{2}C}$$

Here, we have
$$z_{d} = \frac{1}{jwd} = -\frac{1}{\omega d}$$

$$= -\frac{1}{j} \frac{a}{\omega d} = -\frac{1}{j} \frac{144m}{\omega d}$$
$$= \frac{1}{m} \frac{a}{\omega d} = -\frac{1}{m} \frac{144m}{\omega d}$$

If $(Z_{ab} = -45^\circ)$, then $z_{ab} = k(1-j)$ where k is a positive real number.

Then
$$\frac{1}{z_{ab}} = \frac{1}{k(1-j)} \approx \frac{1+j}{k(1-j)(1+j)} = \frac{1+j}{2k}$$
.

Thus,
$$\angle \frac{1}{Z_{ab}} = 45^{\circ}$$
 and $\operatorname{Re}\left[\frac{1}{Z_{ab}}\right] = \operatorname{Im}\left[\frac{1}{Z_{ab}}\right]$.

We observe that the values of $\frac{1}{2}$ and $\frac{1}{2}$ are pure imaginary and constitute the entire imaginary part of $\frac{1}{2}$: $Im\left[\frac{1}{2ab}\right] = Im\left[\frac{1}{2} + \frac{1}{2}\right]$ $= Im\left[\frac{1}{2ab}\right]$ $= Im\left[\frac{1}{2ab}\right]$ $= Im\left[\frac{1}{2ab}\right]$ $= Im\left[\frac{1}{2ab}\right]$ $= Im\left[\frac{1}{2ab}\right]$ $= Im\left[\frac{1}{2ab}\right]$

Note: Im[] has a <u>reai</u> value. Im[a+jb]=b rather than jb.

The real part of \mathbb{Z}_{ab} consists entirely of $\frac{1}{R}$: $Re\left[\frac{1}{\mathbb{Z}_{ab}}\right] = Re\left[\frac{1}{R}\right] = \frac{1}{R}$ Now we solve $Re\left[\frac{1}{\mathbb{Z}_{ab}}\right] = Im\left[\frac{1}{\mathbb{Z}_{ab}}\right]$

 $ar \quad \frac{1}{R} = \omega C - \frac{1}{\omega L}.$

or
$$\frac{1}{Rc}\omega = \omega^2 - \frac{1}{Lc}$$

or $\omega^2 - \frac{1}{Rc}\omega - \frac{1}{Lc} = 0$
or $\omega = \frac{1}{2Rc} \frac{\pm}{\sqrt{\left(\frac{1}{2Rc}\right)^2 + \frac{1}{Lc}}}$

Note: since
$$w > 0$$
, we use only $+\sqrt{\frac{1}{2RC}}$.
 $w = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$

Now we calculate values.

$$\frac{1}{2RC} = \frac{1}{2(2.88)} = \frac{1}{164} = \frac{1}{164} = \frac{1}{164}$$

$$\frac{1}{144} = \frac{1}{144} = \frac{1}{144}$$

$$\frac{1}{144} = \frac{1}{408}$$

$$\frac{1}{144} = \frac{1}{250} + \frac{1}{144} = \frac{1}{144}$$

$$\frac{1}{144} = \frac{1}{250} + \frac{1}{144} = \frac{1}{144}$$

$$\frac{1}{144} = \frac{1}{250} + \frac{1}{144} = \frac{1}{144}$$

$$\frac{1}{144} = \frac{1}{144} = \frac{1}{144} = \frac{1}{144}$$

$$\frac{1}{144} = \frac{1}{144} = \frac{1}{144} = \frac{1}{144}$$

Using values, we have the following: $\omega = 25 \text{ k/s} + \sqrt{(25 \text{ k/s})^2 + (24 \text{ k/s})^2}$ $\omega \doteq 25 \text{ k/s} + 34.7 \text{ k/s}$ $\omega \doteq 59.7 \text{ k/s}$