Ex: Give numerical answers to each of the following questions:
a) Rationalize $\frac{175-j 600}{-3+j 4}$. Express your answer in rectangular form.
b) Find the polar form of $\frac{1}{2}+j \frac{\sqrt{3}}{2}$.
c) Find the rectangular form of $5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}$
d) Find the magnitude of $\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)$.
e) Find the real part of $\frac{(1+j)^{4}}{1+j \sqrt{3}}$.

SoL'n: a) To rationalize, we multiply the numerator and denominator by the conjugate of the denominator.

$$
\begin{aligned}
& \frac{175-j 600}{-3+j 4} \cdot \frac{-3-j 4}{-3-j 4}=\frac{175(-3)-600(4)-j 175(4)-j 600(-3)}{(-3)^{2}+4^{2}} \\
& \frac{175-j 600}{-3+j 4}=\frac{-2925+j 1100}{25}=-117+j 44
\end{aligned}
$$

b) We think of the complex number as a vector and find its length and its angle relative to the real axis.

$$
\frac{1}{2}+j \frac{\sqrt{3}}{2}=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} e^{j \tan ^{-1} \frac{\sqrt{3} / 2}{1 / 2}}=\sqrt{\frac{1}{4}+\frac{3}{4}} e^{j 60^{\circ}}=1 e^{j 60^{\circ}}
$$

or

$$
\frac{1}{2}+j \frac{\sqrt{3}}{2}=e^{j 60^{\circ}}
$$

c) We first multiply the numbers in polar form.

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=5(8) \angle 25^{\circ}+35^{\circ}=40 \angle 60^{\circ}=40 e^{j 60^{\circ}}
$$

Now we convert to rectangular form using Euler's formula.

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=40 \cos \left(60^{\circ}\right)+j 40 \sin \left(60^{\circ}\right)=40 \cdot \frac{1}{2}+j 40 \frac{\sqrt{3}}{2}
$$

or

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=20+j 20 \sqrt{3}
$$

d) We take the magnitude of each term of a product or quotient. We must keep sums as is, however.

$$
\left|\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)\right|=\frac{\left|j^{3}\right|}{|2+j 4|} \frac{\left|30 e^{j 129^{\circ}}\right|}{|2-j|}=\frac{1^{3} \cdot 30}{\sqrt{2^{2}+4^{2}} \sqrt{2^{2}+1^{2}}}
$$

or

$$
\left|\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)\right|=\frac{30}{\sqrt{20} \sqrt{5}}=3
$$

e)

$$
\operatorname{Re}\left[\frac{(1+j)^{4}}{1+j \sqrt{3}}\right]=\operatorname{Re}\left[\frac{\left(\sqrt{2} e^{j 45^{\circ}}\right)^{4}}{2 e^{j 60^{\circ}}}\right]=\operatorname{Re}\left[\frac{4 e j^{180^{\circ}}}{2 e^{j 60^{\circ}}}\right]=\operatorname{Re}\left[2 e^{j\left(180^{\circ}-60^{\circ}\right)}\right]
$$

or

$$
\operatorname{Re}\left[\frac{(1+j)^{4}}{1+j \sqrt{3}}\right]=\operatorname{Re}\left[2 e^{j 120^{\circ}}\right]=\operatorname{Re}\left[2 \cos \left(120^{\circ}\right)+j 2 \sin \left(120^{\circ}\right)\right]
$$

or

$$
\operatorname{Re}\left[\frac{(1+j)^{4}}{1+j \sqrt{3}}\right]=2 \cos \left(120^{\circ}\right)=2\left(-\frac{1}{2}\right)=-1
$$

