Ex:

a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.
so ([n: a) $\quad R_{L}=R_{\text {Th }}$ where $R_{\text {Th }}$ is ike Thevenin equivalent resistance at a, b (with K_{L} removed).

Since there are no dependent sources, we find $R_{\text {rh }}$ by turning off independent sources and looking into a, b :

W_{E} see $30 \Omega\|60 \Omega=30 \Omega \cdot 1\| 2=20 \Omega$.
$\therefore R_{L}=R_{T h}=20 \Omega 2$ for max purr xfer
b) The nat poor is $\frac{v_{T h}^{2}}{4 R_{T h}}$.

VT is the voltage across $a_{1} b$ without R_{L} :

Superpositions yields a solution:
case I: $\# 0 V$ on, $2 A$ off $=$ open

U. sing v-divider, $V_{T h 1}=\frac{30 V \cdot 30 \Omega}{302+60 \Omega}=10 \mathrm{~V}$,
case II: 30 V off $=$ wire, 2 A on

The $2 A$ flows thru $30 \Omega \| 60 \Omega=20 \Omega$ giving, by $O \mathrm{hm}^{\prime} \mathrm{s}$ law

$$
V_{T, 2}=2 \mathrm{~A} \cdot 20.2=40 \mathrm{~V}
$$

Sum the results:

$$
\begin{aligned}
V_{T h} & =V_{T h t}+V_{T h 2}=10 V+40 V=50 V \\
P_{\text {max }} & =\frac{V_{T h}^{2}}{4 R_{T h}}
\end{aligned}=\frac{(50 V)^{2}}{4 \cdot 20 \Omega} .
$$

