

Ex:

After being open for a long time, the switch closes at t = 0. Write an expression for $i_L(t > 0)$ in terms of no circuit quantities other than R_1 , R_2 , R_3 , v_s , and L.

soln: Since R₁ is directly across V₈, it is a 2nd circuit in parallel with the 1st circuit consisting of all components below it that is directly across V₈. Consequently, we can solve the circuits separately, as though each had its own V₈ source.

... we ignore R₁.

We also combine R_z and R_3 , yielding a simple circuit: $\frac{V}{S}$

t=0 model: L=wire, find i_(0-)

No current flows, owing to the open circuit.

 $t = 0^+$ model: $i_L(0^+) = i_L(0^-)$, L= i source $v_A = 0 A = 0$ pen circuit

We have $i(0^+) = i_2(0^+) = i_2(0^-) = 0A$

+→ a model: i = wire, find i(t→ a)

By Ohm's law,
$$i(t\rightarrow \infty) = \frac{V_S}{R_0 + R_3}$$

T = L : We find R_{th} by turning off

R_{th} independent source vs and looking

into circuit from terminals where

L is attached.

Clearly, Rth = Rz+ R3.

Now we use the general form of solution:

$$i(t) = i(t \to \infty) + [i(0^{+}) - i(t \to \infty)] = -t/\tau$$
or
$$i(t) = \frac{v_{5}}{R_{2} + R_{3}} + [0 - \frac{v_{5}}{R_{2} + R_{3}}] = -t/[i/(R_{2} + R_{3})]$$
or
$$i(t) = \frac{v_{5}}{R_{2} + R_{3}} = -t/[i/(R_{2} + R_{3})]$$
or
$$i(t) = \frac{v_{5}}{R_{2} + R_{3}} = -t/[i/(R_{2} + R_{3})]$$
or
$$i(t) = \frac{v_{5}}{R_{2} + R_{3}} = -t/[i/(R_{2} + R_{3})]$$