Ex:

After being open for a long time, the switch closes at $t=0$. Write an expression for $i_{\mathrm{L}}(t>0)$ in terms of no circuit quantities other than $R_{1}, R_{2}, R_{3}, v_{\mathrm{S}}$, and L.
solon: Since R_{1} is directly across V_{s}, it is a and circuit in parable! with the 1 st circuit consisting of all components below it that is directly across vs. Consequently, we can solve the circuits separately, as though each had its own v_{g} source. \therefore we ignore \mathbb{R}_{1}.

We also combine K_{2} and R_{3}, yielding
a simple circuit:

$$
\begin{gathered}
t=0^{-} \operatorname{model}: L=\text { wire, find } i_{2}\left(0^{-}\right) \\
\\
\left.i\left(c^{-}\right)\right\} R_{2}+R_{3}
\end{gathered}
$$

No current flows, owing to the open circuit.

$$
\begin{aligned}
t=0^{+} \operatorname{model}: i_{L}\left(\sigma^{+}\right) & =i_{2}\left(O^{-}\right), \quad L=i \text { source } \\
& =O A=\text { open circuit }
\end{aligned}
$$

We have $i\left(0^{+}\right)=i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right) \Rightarrow O A$
$t \rightarrow \infty$ model: $i=$ wire, find $i(t \rightarrow \infty)$

By Ohm's law, $i(t \rightarrow \infty)=\frac{v_{3}}{\delta_{2}+R_{3}}$
$\tau=\frac{1}{R_{T h}}$: We find $\vec{k}_{\text {Th }}$ by turning off independent source v s and looking into circuit from terminals where L is attached.

$$
\text { clearly, } R_{r k}=k_{2}+R_{3} \text {. }
$$

Now we use the general form of solution:

$$
i(t)=i(t \rightarrow \infty)+\left[i\left(c^{+}\right)-i(t \rightarrow \infty)\right] e^{-t / \tau}, \quad i>0
$$

$$
\text { or } i(t)=\frac{v_{5}}{R_{2}+R_{3}}+\left[0-\frac{v_{3}}{R_{2}+R_{3}}\right] e^{-t /\left[L_{1} /\left(R_{3}+R_{3}\right)\right]}, t>0
$$

$$
\text { or } i\left(\frac{t}{t}\right)=\underset{R_{2}+R_{3}}{v_{5}}\left[1-e^{-t\left(R_{2}+R_{3}\right) / L}\right], t>0
$$

